Fibered visible interferometry and adaptive optics: FRIEND at CHARA
暂无分享,去创建一个
F. Millour | D. Mourard | Y. Bresson | J. Dejonghe | C. Bailet | J. M. Clausse | K. Perraut | T. ten Brummelaar | J. Sturmann | L. Sturmann | M. Tallon | M. A. Martinod | M. Ireland | J. D. Monnier | A. Meilland | M. Ireland | J. Monnier | D. Mourard | K. Perraut | F. Millour | T. Brummelaar | J. Sturmann | L. Sturmann | M. Tallon | A. Meilland | P. Bério | M. Martinod | C. Bailet | Y. Bresson | J. Clausse | J. Dejonghe | P. Bério
[1] D. Buscher. Optimizing a ground-based optical interferometer for sensitivity at low light levels , 1988 .
[2] James H. Clark,et al. Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer , 2016, 1601.00036.
[3] F. J. Abellán,et al. Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen , 2017, 1709.09430.
[4] S. T. Ridgway,et al. First Results from the CHARA Array. II. A Description of the Instrument , 2005 .
[5] P. Feautrier,et al. Long baseline interferometry in the visible: the FRIEND project , 2014, Astronomical Telescopes and Instrumentation.
[6] E. Tatulli,et al. Estimating the phase in groundbased interferometry: performance comparison between singlemode and multimode schemes , 2010, 1009.1797.
[7] Cyril Ruilier. Degraded light coupling into single-mode fibers , 1998, Astronomical Telescopes and Instrumentation.
[8] B. Lazareff,et al. Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.
[9] I. Howarth,et al. The weak magnetic field of the O9.7 supergiant ζ Orionis A , 2008, 0806.2162.
[10] J. Armstrong,et al. The Navy Prototype Optical Interferometer , 1998 .
[11] Thierry Fusco,et al. OCam with CCD220, the Fastest and Most Sensitive Camera to Date for AO Wavefront Sensing , 2011 .
[12] James A. Benson,et al. The Navy Precision Optical Interferometer: an update , 2016, Astronomical Telescopes + Instrumentation.
[13] S. Lafrasse,et al. LITpro: a model fitting software for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.
[14] F. Roddier,et al. Coupling starlight into single-mode fiber optics. , 1988, Applied optics.
[15] D. F. Buscher,et al. Detection noise bias and variance in the power spectrum and bispectrum in optical interferometry , 2011, 1106.3196.
[16] Rafael Millan-Gabet,et al. SMART precision interferometry at 794 nm , 2003, SPIE Astronomical Telescopes + Instrumentation.
[17] A. Blazit,et al. Dispersed fringe tracking with the multi-r(0) apertures of the Grand Interféromètre à 2 Télescopes. , 1996, Applied optics.
[18] Karine Perraut,et al. Performance, results, and prospects of the visible spectrograph VEGA on CHARA , 2012, Other Conferences.
[19] Peter G. Tuthill,et al. Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.
[20] John D. Monnier,et al. The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results , 2014, Astronomical Telescopes and Instrumentation.
[21] Romain G. Petrov,et al. VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .
[22] Experimental study of distorted beams coupling in a single mode waveguide , 2013 .
[23] K.-H. Hofmann,et al. Vigorous atmospheric motion in the red supergiant star Antares , 2017, Nature.
[24] Karine Perraut,et al. SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] Laszlo Sturmann,et al. STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS , 2011, 1112.3316.
[26] R. T. Zavala,et al. Dynamical mass of the O-type supergiant in ζ Orionis A , 2013, 1306.0330.
[27] D. F. Barber,et al. PI3K p110γ Deletion Attenuates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in Lesions , 2013, PloS one.
[28] F. Millour,et al. VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000 - Studies of the primary star wind and innermost wind-wind collision zone , 2016, 1610.05438.
[29] B. Hadwen,et al. The noise performance of electron multiplying charge-coupled devices , 2003 .
[30] C. A. Haniff,et al. Low light level CCDs and visibility parameter estimation , 2004 .
[31] M. A. Martinod,et al. Long baseline interferometry in the visible: first results of the FRIEND project , 2016, Astronomical Telescopes + Instrumentation.
[32] Sebastien Morel,et al. VLTI technical advances: present and future , 2004, SPIE Astronomical Telescopes + Instrumentation.
[33] F Cassaing,et al. Coupling of large telescopes and single-mode waveguides: application to stellar interferometry. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[34] Xiao Che,et al. CHARA array adaptive optics II: non-common-path correction and downstream optics , 2014, Astronomical Telescopes and Instrumentation.
[35] Fiber optic interferometry: statistics of visibility and closure phase. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[36] J.-P. Berger,et al. A novel technique to control differential birefringence in optical interferometers Demonstration on the PIONIER-VLTI instrument , 2012 .
[37] J. Sturmann,et al. No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry , 2016, Nature.