Fibered visible interferometry and adaptive optics: FRIEND at CHARA

Aims. In the context of the future developments of long baseline interferometry at visible wavelengths, we have built a prototype instrument called Fibered spectrally Resolved Interferometer – New Design (FRIEND) based on single mode fibers and a new generation detector called Electron Multiplying Charge-Coupled Device (EMCCD). Installed on the Center for High Angular Resolution Astronomy (CHARA) array, it aims to estimate the performance of a fibered instrument in the visible when coupled with telescopes equipped with adaptive optics (AO) in partial correction. Methods. We observed different sequences of targets and reference stars to study the compensation of the birefringence of the fibers, the coupling efficiency in various conditions of correction, and to calibrate our numerical model of signal-to-noise ratio (S/N). We also used a known binary star to demonstrate the reliability and the precision of our squared visibility and closure phase measurements. Results. We firstly present a reliable and stable solution for compensating the birefringence of the fibers with an improvement of a factor of 1.5 of the instrumental visibility. We then demonstrate an improvement by a factor of between 2.5 and 3 of the coupling efficiency when using the LABAO systems in closed loop. The third results of our paper is the demonstration of the correct calibration of the parameters of our S/N estimator provided the correct excess noise factor of EMCCD is correctly taken into account. Finally with the measurements of the angular separation, difference of magnitude and individual diameters of the two components of ζ Ori A, we demonstrate the reliability and precision of our interferometric estimators, and in particular a median residual on the closure phase of 1.2°.

[1]  D. Buscher Optimizing a ground-based optical interferometer for sensitivity at low light levels , 1988 .

[2]  James H. Clark,et al.  Vision: A Six-telescope Fiber-fed Visible Light Beam Combiner for the Navy Precision Optical Interferometer , 2016, 1601.00036.

[3]  F. J. Abellán,et al.  Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen , 2017, 1709.09430.

[4]  S. T. Ridgway,et al.  First Results from the CHARA Array. II. A Description of the Instrument , 2005 .

[5]  P. Feautrier,et al.  Long baseline interferometry in the visible: the FRIEND project , 2014, Astronomical Telescopes and Instrumentation.

[6]  E. Tatulli,et al.  Estimating the phase in groundbased interferometry: performance comparison between singlemode and multimode schemes , 2010, 1009.1797.

[7]  Cyril Ruilier Degraded light coupling into single-mode fibers , 1998, Astronomical Telescopes and Instrumentation.

[8]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[9]  I. Howarth,et al.  The weak magnetic field of the O9.7 supergiant ζ Orionis A , 2008, 0806.2162.

[10]  J. Armstrong,et al.  The Navy Prototype Optical Interferometer , 1998 .

[11]  Thierry Fusco,et al.  OCam with CCD220, the Fastest and Most Sensitive Camera to Date for AO Wavefront Sensing , 2011 .

[12]  James A. Benson,et al.  The Navy Precision Optical Interferometer: an update , 2016, Astronomical Telescopes + Instrumentation.

[13]  S. Lafrasse,et al.  LITpro: a model fitting software for optical interferometry , 2008, Astronomical Telescopes + Instrumentation.

[14]  F. Roddier,et al.  Coupling starlight into single-mode fiber optics. , 1988, Applied optics.

[15]  D. F. Buscher,et al.  Detection noise bias and variance in the power spectrum and bispectrum in optical interferometry , 2011, 1106.3196.

[16]  Rafael Millan-Gabet,et al.  SMART precision interferometry at 794 nm , 2003, SPIE Astronomical Telescopes + Instrumentation.

[17]  A. Blazit,et al.  Dispersed fringe tracking with the multi-r(0) apertures of the Grand Interféromètre à 2 Télescopes. , 1996, Applied optics.

[18]  Karine Perraut,et al.  Performance, results, and prospects of the visible spectrograph VEGA on CHARA , 2012, Other Conferences.

[19]  Peter G. Tuthill,et al.  Sensitive visible interferometry with PAVO , 2008, Astronomical Telescopes + Instrumentation.

[20]  John D. Monnier,et al.  The CHARA array adaptive optics I: common-path optical and mechanical design, and preliminary on-sky results , 2014, Astronomical Telescopes and Instrumentation.

[21]  Romain G. Petrov,et al.  VEGA: Visible spEctroGraph and polArimeter for the CHARA array: principle and performance , 2009 .

[22]  Experimental study of distorted beams coupling in a single mode waveguide , 2013 .

[23]  K.-H. Hofmann,et al.  Vigorous atmospheric motion in the red supergiant star Antares , 2017, Nature.

[24]  Karine Perraut,et al.  SPICA, Stellar Parameters and Images with a Cophased Array: a 6T visible combiner for the CHARA array. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Laszlo Sturmann,et al.  STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS , 2011, 1112.3316.

[26]  R. T. Zavala,et al.  Dynamical mass of the O-type supergiant in ζ Orionis A , 2013, 1306.0330.

[27]  D. F. Barber,et al.  PI3K p110γ Deletion Attenuates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in Lesions , 2013, PloS one.

[28]  F. Millour,et al.  VLTI-AMBER velocity-resolved aperture-synthesis imaging of η Carinae with a spectral resolution of 12 000 - Studies of the primary star wind and innermost wind-wind collision zone , 2016, 1610.05438.

[29]  B. Hadwen,et al.  The noise performance of electron multiplying charge-coupled devices , 2003 .

[30]  C. A. Haniff,et al.  Low light level CCDs and visibility parameter estimation , 2004 .

[31]  M. A. Martinod,et al.  Long baseline interferometry in the visible: first results of the FRIEND project , 2016, Astronomical Telescopes + Instrumentation.

[32]  Sebastien Morel,et al.  VLTI technical advances: present and future , 2004, SPIE Astronomical Telescopes + Instrumentation.

[33]  F Cassaing,et al.  Coupling of large telescopes and single-mode waveguides: application to stellar interferometry. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Xiao Che,et al.  CHARA array adaptive optics II: non-common-path correction and downstream optics , 2014, Astronomical Telescopes and Instrumentation.

[35]  Fiber optic interferometry: statistics of visibility and closure phase. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  J.-P. Berger,et al.  A novel technique to control differential birefringence in optical interferometers Demonstration on the PIONIER-VLTI instrument , 2012 .

[37]  J. Sturmann,et al.  No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry , 2016, Nature.