Effective preconditioning techniques for eigenvalue problems

In the Davidson method, any preconditioner can be exploited for the iterative computation of eigen-pairs. However, the convergence of the eigenproblem solver may be poor if the quality of the preconditioner for linear systems solvers is good. Theoretically, this counter-intuitive phenomenon with the Davidson method is reme-died by the Jacobi-Davidson approach, where the preconditioned system is restricted to appropriate subspaces of co-dimension one. However, it is not clear how the restricted system can be solved accurately and efficiently in case of a good preconditioner. The obvious approach introduces instabilities that hampers convergence. In this paper, we show how an incomplete decomposition based on the MRILU approach can be used in a stable way. We also show how this preconditioner can be efficiently improved when better approximations for the eigenvalue of interest become available. Our approach leads to a good initial guess for the wanted eigenpair and to high quality preconditioners for nearby eigenvalues. The additional costs for updating the preconditioner are negligible.

[1]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  Arnold Reusken,et al.  A Multigrid Method Based on Incomplete Gaussian Elimination , 1996, Numer. Linear Algebra Appl..

[4]  Arnold Reusken A multigrid method based on incomplete Gaussian elimination , 1996 .

[5]  H. V. D. Vorst,et al.  The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme , 1995 .

[6]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[7]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[8]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[9]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[10]  A. van der Ploeg,et al.  Nested grids ILU-decomposition , 1996 .

[11]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[12]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[13]  Bernard Philippe,et al.  The Davidson Method , 1994, SIAM J. Sci. Comput..

[14]  Eugene L. Allgower,et al.  A General View of Minimally Extended Systems for Simple Bifurcation Points , 1997 .

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  Fred Wubs,et al.  Nested grids ILU-decomposition (NGILU) , 1996 .

[17]  H. A. V. D. Vorsty University Utrecht a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems a Generalized Jacobi-davidson Iteration Method for Linear Eigenvalue Problems , 1994 .

[18]  Ronald B. Morgan,et al.  Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems , 1993, SIAM J. Sci. Comput..

[19]  H. V. D. Vorst,et al.  EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 1998 .

[20]  G. Beylkin,et al.  A Multiresolution Strategy for Reduction of Elliptic PDEs and Eigenvalue Problems , 1998 .

[21]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[22]  R. Morgan Generalizations of davidson's method for computing eigenvalues of large nonsymmetric matrices , 1992 .

[23]  H. Schwetlick,et al.  A Generalized Inverse Iteration for Computing Simple Eigenvalues of Nonsymmetric Matrices , 1997 .

[24]  T. Chan Deflation Techniques and Block-Elimination Algorithms for Solving Bordered Singular Systems , 1984 .

[25]  Y. Saad,et al.  Inexact newton preconditioning techniques for large symmetric eigenvalue problems , 1998 .

[26]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .