Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration.

[1]  V. Yang,et al.  Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. , 2010, Molecular pharmaceutics.

[2]  Christian Bergemann,et al.  Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. , 2008, Biomaterials.

[3]  J. Dobson,et al.  Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection , 2007 .

[4]  J. Pile-Spellman,et al.  Intra-arterial Drug Delivery: A Concise Review , 2007, Journal of neurosurgical anesthesiology.

[5]  R. B. Campbell,et al.  Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature. , 2007, Biochimica et biophysica acta.

[6]  Katharina Landfester,et al.  Synthesis and biomedical applications of functionalized fluorescent and magnetic dual reporter nanoparticles as obtained in the miniemulsion process , 2006 .

[7]  J. Dobson Magnetic nanoparticles for drug delivery , 2006 .

[8]  P. Couvreur,et al.  Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? , 2005, International journal of pharmaceutics.

[9]  P. Buffler,et al.  Malignant gliomas in 2005: where to GO from here? , 2005, JAMA.

[10]  C. Patlak,et al.  A critical evaluation of the principles governing the advantages of intra-arterial infusions , 1974, Journal of Pharmacokinetics and Biopharmaceutics.

[11]  Robert Langer,et al.  A polymer library approach to suicide gene therapy for cancer. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Vassal,et al.  Negative preclinical results with stealth nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[13]  M. Friedman Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural and biomedical sciences. , 2004, Journal of agricultural and food chemistry.

[14]  Peter Vajkoczy,et al.  Vascular microenvironment in gliomas. , 2004, Cancer treatment and research.

[15]  R. Weissleder,et al.  Uptake and metabolism of a dual fluorochrome Tat-nanoparticle in HeLa cells. , 2003, Bioconjugate chemistry.

[16]  Vladimir P Torchilin,et al.  Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. , 2002, Cancer research.

[17]  X. Breakefield,et al.  Potential of gene therapy for brain tumors. , 2001, Human molecular genetics.

[18]  C. Alexiou,et al.  Locoregional cancer treatment with magnetic drug targeting. , 2000, Cancer research.

[19]  D. Lu,et al.  Targeted drug delivery for brain cancer treatment. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[20]  David Fortin,et al.  Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood‐brain barrier for the treatment of patients with malignant brain tumors , 2000, Cancer.

[21]  D. Groothuis,et al.  The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. , 2000, Neuro-oncology.

[22]  T. Chenevert,et al.  Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Hanahan,et al.  Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. , 1998, The Journal of clinical investigation.

[24]  J. Gallo,et al.  Enhanced brain tumor selectivity of cationic magnetic polysaccharide microspheres. , 1998, Journal of drug targeting.

[25]  C. Meyers,et al.  Cognitive functioning and quality of life in malignant glioma patients: a review of the literature. , 1997, Psycho-oncology.

[26]  P Reichardt,et al.  Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. , 1996, Cancer research.

[27]  D. Huhn,et al.  Preclinical experiences with magnetic drug targeting: tolerance and efficacy. , 1996, Cancer research.

[28]  R. Packer Brain tumors in children. , 1995, Current opinion in pediatrics.

[29]  Ralph Weissleder,et al.  Colloidal magnetic resonance contrast agents : effect of particle surface on biodistribution , 1993 .

[30]  N. Barroso,et al.  An improved method for carotid artery infusion without vessel occlusion , 1992, Physiology & Behavior.

[31]  P. Couvreur,et al.  Doxorubicin-loaded nanospheres bypass tumor cell multidrug resistance. , 1992, Biochemical pharmacology.

[32]  S. Vincent,et al.  Distribution of anionic sites on the capillary endothelium in an experimental brain tumor model. , 1988, Microcirculation, endothelium, and lymphatics.

[33]  D. Dormont,et al.  Intra-arterial chemotherapy of malignant gliomas. , 1988, Journal of neuroradiology. Journal de neuroradiologie.

[34]  H. Mogami,et al.  Distribution of radiolabeled 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitros ourea hydrochloride in rat brain tumor: intraarterial versus intravenous administration. , 1987, Cancer research.

[35]  D. Groothuis,et al.  Chemotherapy of brain tumors: physiological and pharmacokinetic considerations. , 1986 .

[36]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[37]  E. Kaiser,et al.  Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. , 1970, Analytical biochemistry.