From Supervised to Reinforcement Learning: a Kernel-based Bayesian Filtering Framework
暂无分享,去创建一个
[1] Christopher M. Bishop,et al. Bayesian Regression and Classification , 2003 .
[2] O. Pietquin,et al. Online Bayesian kernel regression from nonlinear mapping of observations , 2008, IEEE Workshop on Machine Learning for Signal Processing.
[3] Rudolph van der Merwe,et al. Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .
[4] Thomas Martinetz,et al. Kernel Rewards Regression: An Information Efficient Batch Policy Iteration Approach , 2006, Artificial Intelligence and Applications.
[5] Matthieu Geist,et al. Bayesian Reward Filtering , 2008, EWRL.
[6] Dimitri P. Bertsekas,et al. Dynamic Programming and Optimal Control, Two Volume Set , 1995 .
[7] Miguel Á. Carreira-Perpiñán,et al. Mode-Finding for Mixtures of Gaussian Distributions , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Robert Fitch,et al. Tracking value function dynamics to improve reinforcement learning with piecewise linear function approximation , 2007, ICML '07.
[9] Simon J. Godsill,et al. Sequential Bayesian Kernel Regression , 2003, NIPS.
[10] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[11] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[12] Lihong Li,et al. Incremental Model-based Learners With Formal Learning-Time Guarantees , 2006, UAI.
[13] Yaakov Engel,et al. Algorithms and representations for reinforcement learning (עם תקציר בעברית, תכן ושער נוסף: אלגוריתמים וייצוגים ללמידה מחיזוקים.; אלגוריתמים וייצוגים ללמידה מחיזוקים.) , 2005 .
[14] Stuart J. Russell,et al. Bayesian Q-Learning , 1998, AAAI/IAAI.
[15] O. Pietquin,et al. A Sparse Nonlinear Bayesian Online Kernel Regression , 2008, 2008 The Second International Conference on Advanced Engineering Computing and Applications in Sciences.
[16] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[17] Anthony Widjaja,et al. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.
[18] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[19] Dan Simon,et al. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .
[20] D. Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .
[21] András Lörincz,et al. Erratum , 2007, Neural Computation.
[22] Shie Mannor,et al. The kernel recursive least-squares algorithm , 2004, IEEE Transactions on Signal Processing.
[23] Lihong Li,et al. PAC model-free reinforcement learning , 2006, ICML.
[24] G. V. Puskorius,et al. A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification , 1998, Proc. IEEE.