Identification of equivalent dynamics using ordinal pattern distributions

The frequency of occurrence of ordinal patterns in an observed (or measured) times series can be used to identify equivalent dynamical system. We demonstrate this approach for system identification and parameter estimation for dynamics that can (at least approximately) be described by one-dimensional iterated maps.

[1]  Niels Wessel,et al.  Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics , 2012, Comput. Biol. Medicine.

[2]  G. Mathern,et al.  Epilepsia , 1991, NEURO FUNDAMENTAL.

[3]  Sergio Rinaldi,et al.  Peak-to-Peak Dynamics: a Critical Survey , 2000, Int. J. Bifurc. Chaos.

[4]  a.R.V.,et al.  Clinical neurophysiology , 1961, Neurology.

[5]  Miguel A. F. Sanjuán,et al.  Combinatorial detection of determinism in noisy time series , 2008 .

[6]  Robert Shaw,et al.  The Dripping Faucet As A Model Chaotic System , 1984 .

[7]  Joseph D Skufca,et al.  Relaxing conjugacy to fit modeling in dynamical systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Matthäus Staniek,et al.  Symbolic transfer entropy. , 2008, Physical review letters.

[9]  Andreas Groth Visualization of coupling in time series by order recurrence plots. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[11]  Mathieu Sinn,et al.  Ordinal analysis of time series , 2005 .

[12]  Ken Kiyono,et al.  Dripping Faucet Dynamics by an Improved Mass-Spring Model , 1999, chao-dyn/9904012.

[13]  Carlo Piccardi,et al.  Control of Complex Peak-to-Peak Dynamics , 2002, Int. J. Bifurc. Chaos.

[14]  José Amigó,et al.  Permutation Complexity in Dynamical Systems , 2010 .

[15]  E. Hellinger,et al.  Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .

[16]  M. C. Soriano,et al.  Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Chstoph Bandt,et al.  Order Patterns in Time Series , 2007 .

[18]  C. Piccardi,et al.  Peak-to-peak dynamics in the dynastic cycle , 2002 .

[19]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  José M. Amigó,et al.  Forbidden ordinal patterns in higher dimensional dynamics , 2008 .

[21]  Cristina Masoller,et al.  Inferring long memory processes in the climate network via ordinal pattern analysis. , 2010, Chaos.

[22]  U. Parlitz,et al.  Manifold learning approach for chaos in the dripping faucet. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[24]  Gaoxiang Ouyang,et al.  Ordinal pattern based similarity analysis for EEG recordings , 2010, Clinical Neurophysiology.

[25]  Joseph D Skufca,et al.  A concept of homeomorphic defect for defining mostly conjugate dynamical systems. , 2008, Chaos.

[26]  B. M. Fulk MATH , 1992 .

[27]  Wolfram Bunk,et al.  Transcripts: an algebraic approach to coupled time series. , 2012, Chaos.

[28]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[29]  José María Amigó,et al.  Estimation of the control parameter from symbolic sequences: unimodal maps with variable critical point. , 2009, Chaos.

[30]  M. C. Soriano,et al.  Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis , 2011, IEEE Journal of Quantum Electronics.

[31]  B. Pompe,et al.  Momentary information transfer as a coupling measure of time series. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Osvaldo A. Rosso,et al.  Missing ordinal patterns in correlated noises , 2010 .

[33]  Kaspar Anton Schindler,et al.  Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures , 2011, Epilepsia.

[34]  C. Bandt Ordinal time series analysis , 2005 .

[35]  Carlo Piccardi Parameter Estimation for Systems with Peak-to-Peak Dynamics , 2008, Int. J. Bifurc. Chaos.