Identification of equivalent dynamics using ordinal pattern distributions
暂无分享,去创建一个
[1] Niels Wessel,et al. Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics , 2012, Comput. Biol. Medicine.
[2] G. Mathern,et al. Epilepsia , 1991, NEURO FUNDAMENTAL.
[3] Sergio Rinaldi,et al. Peak-to-Peak Dynamics: a Critical Survey , 2000, Int. J. Bifurc. Chaos.
[4] a.R.V.,et al. Clinical neurophysiology , 1961, Neurology.
[5] Miguel A. F. Sanjuán,et al. Combinatorial detection of determinism in noisy time series , 2008 .
[6] Robert Shaw,et al. The Dripping Faucet As A Model Chaotic System , 1984 .
[7] Joseph D Skufca,et al. Relaxing conjugacy to fit modeling in dynamical systems. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[8] Matthäus Staniek,et al. Symbolic transfer entropy. , 2008, Physical review letters.
[9] Andreas Groth. Visualization of coupling in time series by order recurrence plots. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] B. Pompe,et al. Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.
[11] Mathieu Sinn,et al. Ordinal analysis of time series , 2005 .
[12] Ken Kiyono,et al. Dripping Faucet Dynamics by an Improved Mass-Spring Model , 1999, chao-dyn/9904012.
[13] Carlo Piccardi,et al. Control of Complex Peak-to-Peak Dynamics , 2002, Int. J. Bifurc. Chaos.
[14] José Amigó,et al. Permutation Complexity in Dynamical Systems , 2010 .
[15] E. Hellinger,et al. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. , 1909 .
[16] M. C. Soriano,et al. Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Chstoph Bandt,et al. Order Patterns in Time Series , 2007 .
[18] C. Piccardi,et al. Peak-to-peak dynamics in the dynastic cycle , 2002 .
[19] L M Hively,et al. Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[20] José M. Amigó,et al. Forbidden ordinal patterns in higher dimensional dynamics , 2008 .
[21] Cristina Masoller,et al. Inferring long memory processes in the climate network via ordinal pattern analysis. , 2010, Chaos.
[22] U. Parlitz,et al. Manifold learning approach for chaos in the dripping faucet. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] Miguel A. F. Sanjuán,et al. True and false forbidden patterns in deterministic and random dynamics , 2007 .
[24] Gaoxiang Ouyang,et al. Ordinal pattern based similarity analysis for EEG recordings , 2010, Clinical Neurophysiology.
[25] Joseph D Skufca,et al. A concept of homeomorphic defect for defining mostly conjugate dynamical systems. , 2008, Chaos.
[26] B. M. Fulk. MATH , 1992 .
[27] Wolfram Bunk,et al. Transcripts: an algebraic approach to coupled time series. , 2012, Chaos.
[28] G. Ouyang,et al. Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.
[29] José María Amigó,et al. Estimation of the control parameter from symbolic sequences: unimodal maps with variable critical point. , 2009, Chaos.
[30] M. C. Soriano,et al. Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis , 2011, IEEE Journal of Quantum Electronics.
[31] B. Pompe,et al. Momentary information transfer as a coupling measure of time series. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Osvaldo A. Rosso,et al. Missing ordinal patterns in correlated noises , 2010 .
[33] Kaspar Anton Schindler,et al. Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures , 2011, Epilepsia.
[34] C. Bandt. Ordinal time series analysis , 2005 .
[35] Carlo Piccardi. Parameter Estimation for Systems with Peak-to-Peak Dynamics , 2008, Int. J. Bifurc. Chaos.