Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons

[1]  S. Mazmanian,et al.  Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. , 2012, Cell host & microbe.

[2]  M. Surette,et al.  The interplay between the intestinal microbiota and the brain , 2012, Nature Reviews Microbiology.

[3]  John F. Cryan,et al.  Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve , 2011, Proceedings of the National Academy of Sciences.

[4]  Mark Lyte,et al.  Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  E. Thomas,et al.  Multiple Neural Oscillators and Muscle Feedback Are Required for the Intestinal Fed State Motor Program , 2011, PloS one.

[6]  T. Klaenhammer,et al.  Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid , 2011, Proceedings of the National Academy of Sciences.

[7]  J. Bienenstock,et al.  Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  G. Raman,et al.  Formulation-based approach to support early drug discovery and development efforts: a case study with enteric microencapsulation dosage form development for a triarylmethane derivative TRAM-34; a novel potential immunosuppressant , 2010, Drug development and industrial pharmacy.

[9]  M. Mulholland,et al.  Functional protease‐activated receptors in the dorsal motor nucleus of the vagus , 2010, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[10]  Ke Ma,et al.  A single dose of carbon monoxide intraperitoneal administration protects rat intestine from injury induced by lipopolysaccharide , 2010, Cell Stress and Chaperones.

[11]  J. Neu,et al.  Molecular Modulation of Intestinal Epithelial Barrier: Contribution of Microbiota , 2010, Journal of biomedicine & biotechnology.

[12]  H. Wulff,et al.  Inhibition of the K+ channel KCa3.1 ameliorates T cell–mediated colitis , 2010, Proceedings of the National Academy of Sciences.

[13]  J. Huizinga,et al.  Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neurones , 2009, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[14]  P. Bertrand The Cornucopia of Intestinal Chemosensory Transduction , 2009, Front. Neurosci..

[15]  Paul Forsythe,et al.  Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium‐dependent potassium channel opening , 2009, Journal of cellular and molecular medicine.

[16]  S. Collins,et al.  Review: Effect of probiotics on gastrointestinal function: evidence from animal models , 2009, Therapeutic advances in gastroenterology.

[17]  J. Huizinga,et al.  Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. , 2009, American journal of physiology. Gastrointestinal and liver physiology.

[18]  J. Bienenstock,et al.  The d‐alanine content of lipoteichoic acid is crucial for Lactobacillus plantarum‐mediated protection from visceral pain perception in a rat colorectal distension model , 2008, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[19]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[20]  Jan D. Huizinga,et al.  In situ recording from gut pacemaker cells , 2008, Pflügers Archiv - European Journal of Physiology.

[21]  J. Baell,et al.  Effects of modulators of Ca2+‐activated, intermediate‐conductance potassium channels on motility of the rat small intestine, in vivo , 2007, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[22]  J. Baell,et al.  Effects of compounds that influence IK (KCNN4) channels on afterhyperpolarizing potentials, and determination of IK channel sequence, in guinea pig enteric neurons. , 2007, Journal of neurophysiology.

[23]  D. Kasper,et al.  A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2 , 2006, The Journal of experimental medicine.

[24]  Bingxian Wang,et al.  Characterization of myenteric sensory neurons in the mouse small intestine. , 2006, Journal of neurophysiology.

[25]  H. Goossens,et al.  Intraspecific Genotypic Characterization of Lactobacillus rhamnosus Strains Intended for Probiotic Use and Isolates of Human Origin , 2006, Applied and Environmental Microbiology.

[26]  J. Bienenstock,et al.  Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats , 2005, Gut.

[27]  W. Jackson,et al.  Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice , 2005, Gut.

[28]  T. Hartung,et al.  Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  F. Shanahan,et al.  Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. , 2005, Gastroenterology.

[30]  P. Bertrand,et al.  Bursts of recurrent excitation in the activation of intrinsic sensory neurons of the intestine , 2004, Neuroscience.

[31]  E. Koonin,et al.  Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? , 2004, Trends in genetics : TIG.

[32]  E. Thomas,et al.  Computational model of the migrating motor complex of the small intestine. , 2004, American journal of physiology. Gastrointestinal and liver physiology.

[33]  A. Kirchgessner,et al.  Slow excitatory metabotropic signal transmission in the enteric nervous system , 2004, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[34]  K. Kamm,et al.  Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum , 2004, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[35]  P. Bertrand ATP and Sensory Transduction in the Enteric Nervous System , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[36]  J. Reynaud,et al.  Analysis of whole‐cell currents by patch clamp of guinea‐pig myenteric neurones in intact ganglia , 2002, The Journal of physiology.

[37]  D. Thompson,et al.  Vagal afferent responses to fatty acids of different chain length in the rat. , 2001, American journal of physiology. Gastrointestinal and liver physiology.

[38]  J. Furness,et al.  The soma and neurites of primary afferent neurons in the guinea‐pig intestine respond differentially to deformation , 2000, The Journal of physiology.

[39]  A. Tzianabos,et al.  T Cells Activated by Zwitterionic Molecules Prevent Abscesses Induced by Pathogenic Bacteria* , 2000, The Journal of Biological Chemistry.

[40]  Furness,et al.  Electrical mapping of the projections of intrinsic primary afferent neurones to the mucosa of the guinea‐pig small intestine , 1998, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[41]  D. Grundy,et al.  The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum , 1998, Neuroscience Letters.

[42]  J. Bornstein,et al.  Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. , 1997, The American journal of physiology.

[43]  K. Abe,et al.  Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain , 1997, Journal of bacteriology.

[44]  J. Wood,et al.  Modulation of calcium currents by G‐proteins and adenosine receptors in myenteric neurones cultured from adult guinea‐pig small intestine , 1995, British journal of pharmacology.

[45]  J. C. Bornstein,et al.  Identification of sensory nerve cells in a peripheral organ (the intestine) of a mammal , 1995, Neuroscience.

[46]  J. C. Bornstein,et al.  Simultaneous intracellular recordings from enteric neurons reveal that myenteric ah neurons transmit via slow excitatory postsynaptic potentials , 1993, Neuroscience.

[47]  D. Kasper,et al.  Immunochemical characterization of two surface polysaccharides of Bacteroides fragilis , 1991, Infection and immunity.

[48]  J. Bornstein,et al.  An electrophysiological study of the projections of putative sensory neurons within the myenteric plexus of the guinea pig ileum , 1990, Neuroscience Letters.

[49]  J. Furness,et al.  Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons, in myenteric ganglia of guinea-pig small intestine , 1988, Journal of neurocytology.

[50]  P. Grafe,et al.  Synaptic modulation of calcium‐dependent potassium conductance in myenteric neurones in the guinea‐pig. , 1980, The Journal of physiology.

[51]  P. Forsythe,et al.  Voices from within: gut microbes and the CNS , 2012, Cellular and Molecular Life Sciences.

[52]  D. Ardid,et al.  Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors , 2007, Nature Medicine.

[53]  N. Mei Intestinal chemosensitivity. , 1985, Physiological reviews.