Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Gabriel Wittum,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part 1: A smooth problem and globally quasi-uniform meshes , 2001, Math. Comput..
[3] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[4] Rüdiger Verfürth,et al. Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.
[5] Jeffrey S. Ovall,et al. Fixing a ''Bug'' in Recovery-Type A Posteriori Error Estimators , 2006 .
[6] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[7] W. Gibbs,et al. Finite element methods , 2017, Graduate Studies in Mathematics.
[8] Jinchao Xu,et al. Superconvergent Derivative Recovery for Lagrange Triangular Elements of Degree p on Unstructured Grids , 2007, SIAM J. Numer. Anal..
[9] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[10] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[11] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[12] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[13] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[14] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..
[15] Ningning Yan,et al. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes , 2001 .
[16] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[17] Zhimin Zhang. A Posteriori Error Estimates on Irregular Grids Based on Gradient Recovery , 2001, Adv. Comput. Math..
[18] Lars B. Wahlbin,et al. Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes. Part II: The piecewise linear case , 2004, Math. Comput..
[19] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[20] I. Babuska,et al. The finite element method and its reliability , 2001 .
[21] Carsten Carstensen,et al. All first-order averaging techniques for a posteriori finite element error control on unstructured grids are efficient and reliable , 2003, Math. Comput..
[22] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[23] Martin Petzoldt,et al. A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..
[24] Mark Ainsworth. A posteriori error estimation in the finite element method , 1989 .
[25] M. Ainsworth,et al. A posteriori error estimators in the finite element method , 1991 .
[26] Zhimin Zhang,et al. Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II) , 1998 .
[27] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[28] Zhiming Chen,et al. On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..
[29] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[30] Carsten Carstensen,et al. An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..
[31] R. Bruce Kellogg,et al. On the poisson equation with intersecting interfaces , 1974 .
[32] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[33] RICARDO H. NOCHETTO,et al. ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDE , .
[34] Susanne C. Brenner,et al. Finite Element Methods , 2000 .