Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p -type GaN by Mg doping followed by low-energy electron beam irradiation

This is a personal history of one of the Japanese researchers engaged in develop ing a method for growing GaN on a sapphire substrate, paving the way for the realization of smart television and display systems using blue LEDs. The most important work was done in the mid- to late 80s. The background to the author’s work and the process by which the technology enabling the growth of GaN and the realization of p-type GaN was established are reviewed.

[1]  O. Durand,et al.  Caracterization of AIN buffer layers on (0001)-sapphire substrates 1 This work was partially supported by the Direction Générale de l'Armement, Direction de la Recherche et des Etudes Techniques (DRET). 1 , 1997 .

[2]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[3]  Naoyuki Takahashi,et al.  Thermodynamic Analysis of InxGa1-xN Alloy Composition Grown by Metalorganic Vapor Phase Epitaxy , 1996 .

[4]  H. Amano,et al.  Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE , 1991 .

[5]  Takashi Mukai,et al.  P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes , 1993 .

[6]  M. Khan,et al.  Influence of buffer layers on the deposition of high quality single crystal GaN over sapphire substrates , 1993 .

[7]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[8]  Isamu Akasaki,et al.  Growth of GaN and AlGaN for UV/blue p-n junction diodes , 1993 .

[9]  P. Schlotter,et al.  Luminescence conversion of blue light emitting diodes , 1997 .

[10]  J. David Zook,et al.  Defeating Compensation in Wide Gap Semiconductors by Growing in H that is Removed by Low Temperature De-Ionizing Radiation , 1992 .

[11]  T. Mizutani,et al.  Effect of Growth Parameters on the Epitaxial Growth of BP on Si Substrate , 1975 .

[12]  Takahiro Kozawa,et al.  Electron beam effects on blue luminescence of zinc-doped GaN , 1988 .

[13]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[14]  H. Amano,et al.  MOVPE growth of GaN on a misoriented sapphire substrate , 1991 .

[15]  F. Bundy,et al.  Man-Made Diamonds , 1955, Nature.

[16]  Isamu Akasaki,et al.  Optical gain of optically pumped Al0.1Ga0.9N/GaN double heterostructure at room temperature , 1994 .

[17]  H. Amano,et al.  Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (11 2̄0) and (0001) Sapphire Substrates , 1988 .

[18]  Shuji Nakamura,et al.  In Situ Monitoring of GaN Growth Using Interference Effects , 1991 .

[19]  H. Amano,et al.  Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate , 1988 .

[20]  Y. Takano,et al.  Effect of AlN buffer layer deposition conditions on the properties of GaN layer , 1999 .

[21]  N. Kobayashi,et al.  Thermal Stability of Low-Temperature GaN and AlN Buffer Layers During Metalorganic Vapor Phase Epitaxy Monitored by In Situ Shallow-Angle Reflectance Using Ultraviolet Light , 1998 .

[22]  H. Amano,et al.  Growth of Si-doped AlxGa1–xN on (0001) sapphire substrate by metalorganic vapor phase epitaxy , 1991 .

[23]  H. Amano,et al.  Effects of hydrogen in an ambient on the crystal growth of GaN using Ga(CH3)3 and NH3 , 1984 .

[24]  T. Matsuoka,et al.  Analysis of two‐step‐growth conditions for GaN on an AlN buffer layer , 1995 .

[25]  Isamu Akasaki,et al.  Growth and Luminescence Properties of Mg‐Doped GaN Prepared by MOVPE , 1990 .

[26]  Motoaki Iwaya,et al.  Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN , 1998 .

[27]  A. Koukitu,et al.  Thermodynamic study on the role of hydrogen during the MOVPE growth of group III nitrides , 1999 .

[28]  Jacques I. Pankove,et al.  Electroluminescence in GaN , 1971 .

[29]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[30]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[31]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[32]  I. Akasaki,et al.  Infrared lattice vibration of vapour-grown AlN , 1967 .

[33]  Isamu Akasaki,et al.  Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer , 1990 .

[34]  F. Morehead,et al.  Self-Compensation Limited Conductivity in Binary Semiconductors. I. Theory , 1964 .

[35]  Isamu Akasaki,et al.  Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE , 1989 .

[36]  Isamu Akasaki,et al.  Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED , 1991 .

[37]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[38]  S. Nakamura,et al.  Thermal Annealing Effects on P-Type Mg-Doped GaN Films , 1992 .

[39]  W. C. Johnson,et al.  Nitrogen Compounds of Gallium. III , 1931 .

[40]  H. Amano,et al.  Cross-sectional TEM study of microstructures in MOVPE GaN films grown on α-Al2O3 with a buffer layer of AlN , 1991 .

[41]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[42]  O. Durand,et al.  Characterization of ALN buffer layers on (0 0 0 1)-sapphire substrates , 1998 .

[43]  W. Rhines,et al.  Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence , 1972 .

[44]  I. Grzegory,et al.  Thermodynamical properties of III–V nitrides and crystal growth of GaN at high N2 pressure , 1997 .

[45]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.