Direct On-Chip Optical Plasmon Detection with an Atomically Thin Semiconductor.

The determination to develop fast, efficient devices has led to vast studies on photonic circuits but it is difficult to shrink these circuits below the diffraction limit of light. However, the coupling between surface plasmon polaritons and nanostructures in the near-field shows promise in developing next-generation integrated circuitry. In this work, we demonstrate the potential for integrating nanoplasmonic-based light guides with atomically thin materials for on-chip near-field plasmon detection. Specifically, we show near-field electrical detection of silver nanowire plasmons with the atomically thin semiconductor molybdenum disulfide. Unlike graphene, atomically thin semiconductors such as molybdenum disulfide exhibit a bandgap that lends itself for the excitation and detection of plasmons. Our fully integrated plasmon detector exhibits plasmon responsivities of ∼255 mA/W that corresponds to highly efficient plasmon detection (∼0.5 electrons per plasmon).

[1]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[2]  Randolph Kirchain,et al.  A roadmap for nanophotonics , 2007 .

[3]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[4]  Hong Wei,et al.  Propagating surface plasmon induced photon emission from quantum dots. , 2009, Nano letters.

[5]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[6]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[7]  Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy , 2013, 1307.5032.

[8]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[9]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[10]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[11]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[12]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[13]  Lukas Novotny,et al.  Integrated nanophotonics based on nanowire plasmons and atomically thin material , 2014, 1404.1853.

[14]  Justin Rattner PLENARY: The Future of Silicon Photonics , 2010 .

[15]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[16]  Zhong Lin Wang,et al.  Electrical tuning of surface plasmon polariton propagation in graphene-nanowire hybrid structure. , 2013, ACS nano.

[17]  Jonghwan Kim,et al.  Electrical control of optical plasmon resonance with graphene , 2013, CLEO: 2013.

[18]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[19]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.

[20]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[21]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[22]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[23]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[24]  Younan Xia,et al.  Observation of plasmon propagation, redirection, and fan-out in silver nanowires. , 2006, Nano letters.

[25]  Moon-Ho Jo,et al.  Near-field electrical detection of optical plasmons and single plasmon sources , 2009, Proceedings of the Fourth European Conference on Antennas and Propagation.

[26]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[27]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[28]  Yingzhou Huang,et al.  Correlation between incident and emission polarization in nanowire surface plasmon waveguides. , 2010, Nano letters.

[29]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[30]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[31]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[32]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[33]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[34]  A. N. Vamivakas,et al.  Optical antenna enhanced graphene photodetector , 2014 .

[35]  Shailesh Kumar,et al.  Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. , 2010, Physical review letters.