ResearchArticle Oblivious Neural Network Computing via Homomorphic Encryption

[1]  Mauro Barni,et al.  A privacy-preserving protocol for neural-network-based computation , 2006, MM&Sec '06.

[2]  Taneli Mielikäinen,et al.  Cryptographically private support vector machines , 2006, KDD '06.

[3]  Rebecca N. Wright,et al.  Privacy-preserving Bayesian network structure computation on distributed heterogeneous data , 2004, KDD.

[4]  Benny Pinkas,et al.  Cryptographic techniques for privacy-preserving data mining , 2002, SKDD.

[5]  Chi-Jen Lu,et al.  Oblivious polynomial evaluation and oblivious neural learning , 2001, Theor. Comput. Sci..

[6]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2000, Journal of Cryptology.

[7]  Ramakrishnan Srikant,et al.  Privacy-preserving data mining , 2000, SIGMOD '00.

[8]  Moni Naor,et al.  Nonmalleable Cryptography , 2000, SIAM Rev..

[9]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[10]  Jean-Paul M. G. Linnartz,et al.  Public watermarks and resistance to tampering , 1997, Proceedings of International Conference on Image Processing.

[11]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[12]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[13]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).