Self-propelled motion of a rigid body inside a density dependent incompressible fluid

This paper is devoted to the existence of a weak solution to a system describing a self-propelled motion of a rigid body in a viscous fluid in the whole ℝ3. The fluid is modelled by the incompressible nonhomogeneous Navier-Stokes system with a nonnegative density. The motion of the rigid body is described by the balance of linear and angular momentum. We consider the case where slip is allowed at the fluid-solid interface through Navier condition and prove the global existence of a weak solution.

[1]  Giovanni P. Galdi,et al.  Chapter 7 – On the Motion of a Rigid Body in a Viscous Liquid: A Mathematical Analysis with Applications , 2002 .

[2]  Dorin Bucur,et al.  Boundary Behavior of Viscous Fluids: Influence of Wall Roughness and Friction-driven Boundary Conditions , 2010 .

[3]  Willi Jäger,et al.  On the Roughness-Induced Effective Boundary Conditions for an Incompressible Viscous Flow , 2001 .

[4]  M. Tucsnak,et al.  $L^p$-$L^q$ Maximal Regularity for some Operators Associated with Linearized Incompressible Fluid-Rigid Body Problems , 2017, 1712.00223.

[5]  Marius Tucsnak,et al.  A control theoretic approach to the swimming of microscopic organisms , 2007 .

[6]  A. Silvestre On the slow motion of a self-propelled rigid body in a viscous incompressible fluid , 2002 .

[7]  T. Bodnár,et al.  Fluid-structure interaction and biomedical applications , 2014 .

[8]  Alberto Bressan,et al.  Impulsive control of Lagrangian systems and locomotion in fluids , 2007 .

[9]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[10]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[11]  Franck Sueur,et al.  On the "viscous incompressible fluid + rigid body" system with Navier conditions , 2012, 1206.0029.

[12]  CONTROLLABILITY PROPERTIES OF A CLASS OF SYSTEMS MODELING SWIMMING MICROSCOPIC ORGANISMS , 2007, 0711.2488.

[13]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[14]  B. Muha,et al.  Strong solutions in $L^2$ framework for fluid-rigid body interaction problem. Mixed case , 2017, Topological Methods in Nonlinear Analysis.

[15]  François Alouges,et al.  Optimal Strokes for Low Reynolds Number Swimmers: An Example , 2008, J. Nonlinear Sci..

[16]  C. Conca,et al.  Existence of solutions for the equations , 2000 .

[17]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[18]  Vincent C. Poor,et al.  On the Motion of a Rigid Body , 1945 .

[19]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[20]  Jacques Simon,et al.  Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure , 1990 .

[21]  Š. Nečasová,et al.  The motion of the rigid body in the viscous fluid including collisions. Global solvability result , 2017 .

[22]  Giovanni P. Galdi,et al.  On the Steady Self‐Propelled Motion of a Body in a Viscous Incompressible Fluid , 1999 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Chao Wang,et al.  Strong solutions for the fluid-solid systems in a 2-D domain , 2014, Asymptot. Anal..

[25]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[26]  Victor N. Starovoitov,et al.  Solvability of the problem of the self-propelled motion of several rigid bodies in a viscous incompressible fluid , 2007, Comput. Math. Appl..

[27]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[28]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[29]  Matthieu Hillairet,et al.  Existence of Weak Solutions Up to Collision for Viscous Fluid‐Solid Systems with Slip , 2012, 1207.0469.

[30]  G. Galdi,et al.  Particles in Flows , 2017 .

[31]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[32]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[33]  P. Hartman Ordinary Differential Equations , 1965 .

[34]  David G'erard-Varet,et al.  The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow , 2013, 1302.7098.

[35]  Thomas Chambrion,et al.  Locomotion and Control of a Self-Propelled Shape-Changing Body in a Fluid , 2009, J. Nonlinear Sci..

[36]  Franck Boyer,et al.  Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models , 2012 .

[37]  N. Masmoudi,et al.  Relevance of the Slip Condition for Fluid Flows Near an Irregular Boundary , 2010 .

[38]  Takéo Takahashi,et al.  Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid , 2008 .

[39]  Mariarosaria Padula,et al.  On the existence and uniqueness of non-homogeneous motions in exterior domains , 1990 .

[40]  Ana L. Silvestre,et al.  On the Self-Propelled Motion of a Rigid Body in a Viscous Liquid and on the Attainability of Steady Symmetric Self-Propelled Motions , 2002 .

[41]  B. Desjardins Global existence results for the incompressible density-dependent Navier-Stokes equations in the whole space , 1997, Differential and Integral Equations.

[42]  Matthias Hieber,et al.  Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids , 2012 .

[43]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[44]  P. Lions Mathematical topics in fluid mechanics , 1996 .