Analytical solution to the dynamic analysis of laminated beams using higher order refined theory

Analytical solution to the natural frequency analysis of composite and sandwich beams based on a higher order refined theory is presented. This theory incorporates cubic axial, transverse shear and quadratic transverse normal strain components in the basic formulation - thus modelling the warping of cross section accurately and eliminating the need for a shear correction coefficient. Also, it considers each layer of the lamina to be orthotropic and in a two dimensional state of plane stress. The equations of equilibrium are derived using Hamilton's principle. Numerical experiments are carried out and from the results of thick and thin sections, conclusions are drawn.

[1]  I. Elishakoff,et al.  A transverse shear and normal deformable orthotropic beam theory , 1992 .

[2]  Mario Paz,et al.  Structural Dynamics: Theory and Computation , 1981 .

[3]  J. N. Reddy,et al.  On the Solutions to Forced Motions of Rectangular Composite Plates , 1982 .

[4]  R. Christensen,et al.  A HIGH-ORDER THEORY OF PLATE DEFORMATION, PART 1: HOMOGENEOUS PLATES , 1977 .

[5]  K. Ahmed Dynamic analysis of sandwich beams , 1972 .

[6]  M. Levinson,et al.  A new rectangular beam theory , 1981 .

[7]  L. S. Teoh,et al.  The vibration of beams of fibre reinforced material , 1977 .

[8]  Tarun Kant,et al.  On the performance of higher order theories for transient dynamic analysis of sandwich and composite beams , 1997 .

[9]  G. Herrmann FORCED MOTIONS OF TIMOSHENKO BEAMS , 1953 .

[10]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[11]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[12]  E. P. Popov,et al.  Introduction to Mechanics of Solids , 1968 .

[13]  A. Rao,et al.  Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates , 1970 .

[14]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[15]  R. D. Henshell,et al.  A Timoshenko beam element , 1972 .

[16]  D. L. Thomas,et al.  Timoshenko beam finite elements , 1973 .

[17]  B.A.H. Abbas,et al.  Finite element model for dynamic analysis of Timoshenko beam , 1975 .

[18]  J. Reddy,et al.  A higher order beam finite element for bending and vibration problems , 1988 .

[19]  A. V. Krishna Murty,et al.  Analysis of short beams , 1970 .

[20]  G. Cowper,et al.  On the Accuracy of Timoshenko's Beam Theory , 1968 .

[21]  Y. K. Cheung,et al.  Bending and vibration of multilayer sandwich beams and plates , 1973 .

[22]  J. K. Chen,et al.  Nonlinear transient responses of initially stressed composite plates , 1985 .

[23]  P. Cunniff,et al.  The Vibration of Cantilever Beams of Fiber Reinforced Material , 1972 .

[24]  J. N. Reddy,et al.  Energy and variational methods in applied mechanics , 1984 .

[25]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[26]  J. Archer Consistent matrix formulations for structural analysis using finite-element techniques. , 1965 .

[27]  Tarun Kant,et al.  FREE VIBRATION ANALYSIS OF FIBER REINFORCED COMPOSITE BEAMS USING HIGHER ORDER THEORIES AND FINITE ELEMENT MODELLING , 1996 .

[28]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[29]  Ahmed K. Noor,et al.  Three-dimensional solutions for antisymmetrically laminated anisotropic plates , 1990 .

[30]  Tarun Kant,et al.  New theories for symmetric/unsymmetric composite and sandwich beams with C0 finite elements , 1993 .

[31]  A. Krishn,et al.  Vibrations of short beams , 1970 .

[32]  N. G. Stephen,et al.  A second order beam theory , 1979 .

[33]  Tarun Kant,et al.  Higher-order shear deformable theories for flexure of sandwich plates—Finite element evaluations , 1988 .

[34]  Raymond D. Mindlin,et al.  Beam Vibrations With Time-Dependent Boundary Conditions , 1989 .

[35]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[36]  K. Chandrashekhara,et al.  Vibration of Symmetrically Laminated Clamped-Free Beam with a Mass At the Free End , 1993 .

[37]  R. Nickel,et al.  Convergence of consistently derived Timoshenko beam finite elements , 1972 .

[38]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[39]  Tarun Kant,et al.  A finite element model for a higher-order shear-deformable beam theory , 1988 .

[40]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[41]  Z. Rychter On the accuracy of a beam theory , 1987 .

[42]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .