Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap

Facial expression recognition is an interesting and challenging subject. Considering the nonlinear manifold structure of facial images, a new kernel-based manifold learning method, called kernel discriminant isometric mapping (KDIsomap), is proposed. KDIsomap aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. KDIsomap is used to perform nonlinear dimensionality reduction on the extracted local binary patterns (LBP) facial features, and produce low-dimensional discrimimant embedded data representations with striking performance improvement on facial expression recognition tasks. The nearest neighbor classifier with the Euclidean metric is used for facial expression classification. Facial expression recognition experiments are performed on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database. Experimental results indicate that KDIsomap obtains the best accuracy of 81.59% on the JAFFE database, and 94.88% on the Cohn-Kanade database. KDIsomap outperforms the other used methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), kernel linear discriminant analysis (KLDA) as well as kernel isometric mapping (KIsomap).

[1]  Heeyoul Choi,et al.  Robust kernel Isomap , 2007, Pattern Recognit..

[2]  Rogério Schmidt Feris,et al.  Manifold Based Analysis of Facial Expression , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[3]  Daijin Kim,et al.  Natural facial expression recognition using differential-AAM and manifold learning , 2009, Pattern Recognit..

[4]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[5]  Takeo Kanade,et al.  Facial Expression Analysis , 2011, AMFG.

[6]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.

[7]  Michael J. Lyons,et al.  Automatic Classification of Single Facial Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  LinLin Shen,et al.  A review on Gabor wavelets for face recognition , 2006, Pattern Analysis and Applications.

[9]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[13]  Ioannis Pitas,et al.  Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines , 2007, IEEE Transactions on Image Processing.

[14]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[15]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[16]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[17]  Richard Bowden,et al.  Local binary patterns for multi-view facial expression recognition , 2011 .

[18]  Maja Pantic,et al.  Dynamics of facial expression: recognition of facial actions and their temporal segments from face profile image sequences , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[20]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[21]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[22]  Takeo Kanade,et al.  Recognizing Action Units for Facial Expression Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[24]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[25]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[26]  George N. Votsis,et al.  Emotion recognition in human-computer interaction , 2001, IEEE Signal Process. Mag..

[27]  Fernando De la Torre,et al.  Facial Expression Analysis , 2011, Visual Analysis of Humans.

[28]  Nicu Sebe,et al.  Facial expression recognition from video sequences: temporal and static modeling , 2003, Comput. Vis. Image Underst..

[29]  Paola Campadelli,et al.  Face and Facial Feature Localization , 2005, ICIAP.

[30]  LinLin Shen,et al.  Gabor wavelets and General Discriminant Analysis for face identification and verification , 2007, Image Vis. Comput..

[31]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.