Parameterized Design Optimization of a Magnetohydrodynamic Liquid Metal Active Cooling Concept

The success of model-based multifunctional material design efforts relies on the proper development of multiphysical models and advanced optimization algorithms. This paper addresses both in the context of a structure that includes a liquid metal (LM) circuit for integrated cooling. We demonstrate for the first time on a complex engineering problem the use of a parameterized approach to design optimization that solves a family of optimization problems as a function of parameters exogenous to the subsystem of interest. This results in general knowledge about the capabilities of the subsystem rather than a restrictive point solution. We solve this specialized problem using the predictive parameterized Pareto genetic algorithm (P3GA) and show that it efficiently produces results that are accurate and useful for design exploration and reasoning. A “population seeding” approach allows an efficient multifidelity approach that combines a computationally efficient reduced-fidelity algebraic model with a computationally intensive finite-element model. Using data output from P3GA, we explore different design scenarios for the LM thermal management concept and demonstrate how engineers can make a final design selection once the exogenous parameters are resolved.

[1]  Richard J. Malak,et al.  Using parameterized efficient sets to model alternatives for systems design decisions , 2008 .

[2]  Albert van den Berg,et al.  A high current density DC magnetohydrodynamic (MHD) micropump. , 2005, Lab on a chip.

[3]  Ilan Kroo,et al.  Collaborative Optimization: Status and Directions , 2000 .

[4]  T Haftka Raphael,et al.  Multidisciplinary aerospace design optimization: survey of recent developments , 1996 .

[5]  Jason Heikenfeld,et al.  Reconfigurable liquid metal circuits by Laplace pressure shaping , 2012 .

[6]  Bernard Lubarsky,et al.  Review of experimental investigations of liquid-metal heat transfer , 1956 .

[7]  Malcolm McCaig,et al.  Permanent magnets in theory and practice , 1977 .

[8]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[9]  Edo S. Boek,et al.  Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries , 2010, Comput. Math. Appl..

[10]  Scott Ferguson,et al.  A study of convergence and mapping in preliminary vehicle design , 2005 .

[11]  Richard J. Malak,et al.  P3GA: An Algorithm for Technology Characterization , 2015 .

[12]  A. Messac,et al.  Concept Selection Using s-Pareto Frontiers , 2003 .

[13]  Keiji Miyazaki,et al.  Present understanding of MHD and heat transfer phenomena for liquid metal blankets , 1995 .

[14]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[15]  Chang-Jin Kim,et al.  Microscale Liquid-Metal Switches—A Review , 2009, IEEE Transactions on Industrial Electronics.

[16]  Eugene M. Cliff,et al.  Computational Methods for Optimal Design and Control , 1998 .

[17]  Tao Jiang,et al.  Target Cascading in Optimal System Design , 2003, DAC 2000.

[18]  Ross Wilcoxon,et al.  A compliant thermal spreader with internal liquid metal cooling channels , 2010, 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM).

[19]  Robert R. Parker,et al.  Technology Characterization Models and Their Use in Systems Design , 2014 .

[20]  C. Carlsson,et al.  A parametric approach to fuzzy linear programming , 1986 .

[21]  Haim H. Bau,et al.  When MHD-based microfluidics is equivalent to pressure-driven flow , 2011 .

[22]  Bumkyoo Choi,et al.  Development of the MHD micropump with mixing function , 2011 .

[23]  John D. Whitcomb,et al.  Numerical Investigation of Actively Cooled Structures in Hypersonic Flow , 2014 .

[24]  C. Pozrikidis,et al.  Fluid Dynamics: Theory, Computation, and Numerical Simulation , 2001 .

[25]  Piyush R. Thakre,et al.  Three‐Dimensional Microvascular Fiber‐Reinforced Composites , 2011, Advanced materials.

[26]  U. Ghoshal,et al.  High-performance liquid metal cooling loops , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[27]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[28]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[29]  Panos Y. Papalambros,et al.  Convergence properties of analytical target cascading , 2002 .

[30]  Xiuhe Wang,et al.  The optimization of pole arc coefficient to reduce cogging torque in surface-mounted permanent magnet motors , 2006, IEEE Transactions on Magnetics.

[31]  Pierre Mertiny,et al.  Cost optimization of a hybrid composite flywheel rotor with a split-type hub using combined analytical/numerical models , 2011 .

[32]  Efstratios N. Pistikopoulos,et al.  Multi-parametric model-based control : theory and applications , 2007 .

[33]  Edo S. Boek,et al.  Two-dimensional lattice-Boltzmann simulations of single phase flow in a pseudo two-dimensional micromodel , 2006 .

[34]  Deepak Kumar,et al.  Multilevel optimization for enterprise driven decision-based product design , 2006 .

[35]  Efstratios N. Pistikopoulos,et al.  Multi-Parametric Model-Based Control: Volume 2: Theory and Applications , 2007 .

[36]  John E. Dennis,et al.  Problem Formulation for Multidisciplinary Optimization , 1994, SIAM J. Optim..

[37]  R. Wilcoxon,et al.  Cooling potential of galinstan-based minichannel heat sinks , 2012, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[38]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[39]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[40]  Xiaoyu Gu,et al.  Decision-Based Collaborative Optimization , 2002 .

[41]  Jan G. Korvink,et al.  Efficient optimization of transient dynamic problems in MEMS devices using model order reduction , 2005 .

[42]  Christiaan J. J. Paredis,et al.  Compositional Modelling of Fluid Power Systems using Predictive Tradeoff Models , 2008 .

[43]  Gregory H. Huff,et al.  Frequency reconfigurable patch antenna using liquid metal as switching mechanism , 2013 .

[44]  Christiaan J. J. Paredis,et al.  Using Parameterized Pareto Sets to Model Design Concepts , 2010 .

[45]  Carmel Majidi,et al.  Liquid-phase gallium-indium alloy electronics with microcontact printing. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[46]  Don H. Johnson,et al.  Statistical Signal Processing , 2009, Encyclopedia of Biometrics.

[47]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[48]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[49]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[50]  Andrea Cristofolini,et al.  Study of the design model of a liquid metal induction pump , 1998 .

[51]  Deepak Kumar,et al.  Target Exploration for Disconnected Feasible Regions in Enterprise-Driven Multilevel Product Design , 2006 .

[52]  Paul R. Milgrom,et al.  Envelope Theorems for Arbitrary Choice Sets , 2002 .

[53]  Paul R. Milgrom,et al.  Monotone Comparative Statics , 1994 .