Plasmonic waveguide modes of film-coupled metallic nanocubes.

A metallic nanoparticle positioned over a metal film offers great advantages as a highly controllable system relevant for probing field-enhancement and other plasmonic effects. Because the size and shape of the gap between the nanoparticle and film can be controlled to subnanometer precision using relatively simple, bottom-up fabrication approaches, the film-coupled nanoparticle geometry has recently been applied to enhancing optical fields, accessing the quantum regime of plasmonics, and the design of surfaces with controlled reflectance. In the present work, we examine the plasmon modes associated with a silver nanocube positioned above a silver or gold film, separated by an organic, dielectric spacer layer. The film-coupled nanocube is of particular interest due to the formation of waveguide cavity-like modes between the nanocube and film. These modes impart distinctive scattering characteristics to the system that can be used in the creation of controlled reflectance surfaces and other applications. We perform both experimental spectroscopy and numerical simulations of individual nanocubes positioned over a metal film, finding excellent agreement between experiment and simulation. The waveguide mode description serves as a starting point to explain the optical properties observed.

[1]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[2]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[3]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[4]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[5]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[6]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[7]  Andrea Alu,et al.  A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance , 2013, CLEO: 2013.

[8]  David R. Smith,et al.  Impact of nonlocal response on metallodielectric multilayers and optical patch antennas , 2012, 1211.5504.

[9]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[10]  S. Bozhevolnyi,et al.  Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons , 2009 .

[11]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[12]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[13]  Q. Wei,et al.  Cavity modes and their excitations in elliptical plasmonic patch nanoantennas. , 2012, Optics express.

[14]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[15]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[16]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[17]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[18]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[19]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[20]  Arto V. Nurmikko,et al.  Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime , 2004 .

[21]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[22]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[23]  Leila Yousefi,et al.  Waveguide-fed optical hybrid plasmonic patch nano-antenna. , 2012, Optics express.

[24]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[25]  P. Kik,et al.  Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas. , 2012, ACS nano.

[26]  Hideki T. Miyazaki,et al.  Controlled plasmon resonance in closed metal/insulator/metal nanocavities , 2006 .

[27]  Peter Nordlander,et al.  Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. , 2011, Nano letters.

[28]  J. Shumaker-Parry,et al.  Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. , 2007, Journal of the American Chemical Society.

[29]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[30]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[31]  David R. Smith,et al.  Plasmon ruler with angstrom length resolution. , 2012, ACS nano.

[32]  Pieter G. Kik,et al.  Single Particle Spectroscopy Study of Metal-Film-Induced Tuning of Silver Nanoparticle Plasmon Resonances† , 2010 .

[33]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[34]  N J Halas,et al.  Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. , 2005, Nano letters.

[35]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[36]  J. Aizpurua,et al.  Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. , 2011, Nano letters.

[37]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[38]  M. Brongersma,et al.  Metal-dielectric-metal surface plasmon-polariton resonators , 2012 .

[39]  C. Manolatou,et al.  Subwavelength Nanopatch Cavities for Semiconductor Plasmon Lasers , 2007, IEEE Journal of Quantum Electronics.

[40]  Younan Xia,et al.  Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. , 2005, Angewandte Chemie.

[41]  P. Lalanne,et al.  Ultrasmall metal-insulator-metal nanoresonators: impact of slow-wave effects on the quality factor , 2012 .

[42]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[43]  J. Greffet,et al.  Optical patch antennas for single photon emission using surface plasmon resonances. , 2010, Physical review letters.

[44]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[45]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters (Print).

[46]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[47]  Jennifer A. Dionne,et al.  Observation of quantum tunneling between two plasmonic nanoparticles. , 2013, Nano letters.

[48]  David R. Smith,et al.  Quasi-analytic study of scattering from optical plasmonic patch antennas , 2013 .

[49]  H. Lezec,et al.  Highly confined photon transport in subwavelength metallic slot waveguides. , 2006, Nano letters.

[50]  Sang Woo Han,et al.  Real-space mapping of the strongly coupled plasmons of nanoparticle dimers. , 2009, Nano letters.

[51]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[52]  Reuven Gordon,et al.  Light in a subwavelength slit in a metal: Propagation and reflection , 2006 .

[53]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[54]  George C. Schatz,et al.  Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes , 2009 .

[55]  Weiyang Li,et al.  Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor. , 2010, Chemistry.

[56]  T. Odom,et al.  Gold Nanopyramids Assembled into High-Order Stacks Exhibit Increased SERS Response. , 2010, The journal of physical chemistry letters.

[57]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[58]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[59]  Olivier J F Martin,et al.  Optical interactions in a plasmonic particle coupled to a metallic film. , 2006, Optics express.

[60]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[61]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[62]  F. Lederer,et al.  Circular Optical Nanoantennas - An Analytical Theory , 2011, 1107.4934.

[63]  L. Eng,et al.  Two particle enhanced nano Raman microscopy and spectroscopy. , 2007, Nano letters.

[64]  Gennady Shvets,et al.  Large-area, wide-angle, spectrally selective plasmonic absorber , 2011, 1104.3129.

[65]  Huaiwu Zhang,et al.  Dual band terahertz metamaterial absorber: Design, fabrication, and characterization , 2009 .

[66]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[67]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Olivier J F Martin,et al.  Tunable composite nanoparticle for plasmonics. , 2006, Optics letters.

[69]  Younan Xia,et al.  The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. , 2007, Nano letters.

[70]  June Park,et al.  Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials , 2013 .

[71]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[72]  G. Arya,et al.  Self-orienting nanocubes for the assembly of plasmonic nanojunctions. , 2012, Nature nanotechnology.