On the Representation of Finite Deterministic 2-Tape Automata

This paper presents properties of relations between words that are realized by deterministic finite 2-tape automata. It has been made as complete as possible, and is structured by the systematic use of the matrix representation of automata. It is first shown that deterministic 2-tape automata are characterized as those which can be given a prefix matrix representation. Schutzenberger construct on representations, the one that gives semi-monomial representations for rational functions of words, is then applied to this prefix representation in order to obtain a new proof of the fact that the lexicographic selection of a deterministic rational relation on words is a rational function.

[1]  Jacques Sakarovitch,et al.  Synchronized Rational Relations of Finite and Infinite Words , 1993, Theor. Comput. Sci..

[2]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[3]  Tero Harju,et al.  The Equivalence Problem of Multitape Finite Automata , 1991, Theor. Comput. Sci..

[4]  Jacques Sakarovitch Kleene's theorem revisited , 1986, IMYCS.

[5]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[6]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[7]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[8]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[9]  Marcel Paul Schützenberger,et al.  Sur une Variante des Fonctions Sequentielles , 1977, Theor. Comput. Sci..

[10]  Marcel Paul Schützenberger,et al.  Sur les relations rationnelles , 1975, Automata Theory and Formal Languages.

[11]  E. F. Moore Sequential Machines: Selected Papers , 1964 .

[12]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[13]  Jorge E. Mezei,et al.  On Relations Defined by Generalized Finite Automata , 1965, IBM J. Res. Dev..

[14]  John R. Stallings,et al.  Topology of finite graphs , 1983 .

[15]  Peter Aczel etc HANDBOOK OF MATHEMATICAL LOGIC , 1999 .

[16]  Jacques Sakarovitch,et al.  On the Lexicographic Uniformisation of Deterministic 2-Tape Automata (Extended Abstract) , 1994, IFIP Congress.

[17]  Jacques Sakarovitch Deux Remarques sur un Théorème de S. Eilenberg , 1983, RAIRO Theor. Informatics Appl..

[18]  Jacques Sakarovitch A Construction on Finite Automata that has Remained Hidden , 1998, Theor. Comput. Sci..

[19]  Marcel Paul Schützenberger,et al.  Sur les Relations Rationnelles Entre Monoides Libres , 1976, Theor. Comput. Sci..

[20]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[21]  J. Howard Johnson,et al.  Do Rational Equivalence Relations have Regular Cross-Sections? , 1985, ICALP.

[22]  Carl A. Gunter,et al.  In handbook of theoretical computer science , 1990 .

[23]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[24]  Arnold L. Rosenberg,et al.  Multitape One-Way Nonwriting Automata , 1968, J. Comput. Syst. Sci..

[25]  J. Howard Johnson Rational Equivalence Relations , 1986, Theor. Comput. Sci..

[26]  Dirk Siefkes,et al.  The collected works of J. Richard Büchi , 1989 .