CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach.

The lithium silicates have attracted scientific interest due to their potential use as high-temperature sorbents for CO2 capture. The electronic properties and thermodynamic stabilities of lithium silicates with different Li2O/SiO2 ratios (Li2O, Li8SiO6, Li4SiO4, Li6Si2O7, Li2SiO3, Li2Si2O5, Li2Si3O7, and α-SiO2) have been investigated by combining first-principles density functional theory with lattice phonon dynamics. All these lithium silicates examined are insulators with band-gaps larger than 4.5 eV. By decreasing the Li2O/SiO2 ratio, the first valence bandwidth of the corresponding lithium silicate increases. Additionally, by decreasing the Li2O/SiO2 ratio, the vibrational frequencies of the corresponding lithium silicates shift to higher frequencies. Based on the calculated energetic information, their CO2 absorption capabilities were extensively analyzed through thermodynamic investigations on these absorption reactions. We found that by increasing the Li2O/SiO2 ratio when going from Li2Si3O7 to Li8SiO6, the corresponding lithium silicates have higher CO2 capture capacity, higher turnover temperatures and heats of reaction, and require higher energy inputs for regeneration. Based on our experimentally measured isotherms of the CO2 chemisorption by lithium silicates, we found that the CO2 capture reactions are two-stage processes: (1) a superficial reaction to form the external shell composed of Li2CO3 and a metal oxide or lithium silicate secondary phase and (2) lithium diffusion from bulk to the surface with a simultaneous diffusion of CO2 into the shell to continue the CO2 chemisorption process. The second stage is the rate determining step for the capture process. By changing the mixing ratio of Li2O and SiO2, we can obtain different lithium silicate solids which exhibit different thermodynamic behaviors. Based on our results, three mixing scenarios are discussed to provide general guidelines for designing new CO2 sorbents to fit practical needs.

[1]  János G. Ángyán,et al.  Polymorphism in silica studied in the local density and generalized-gradient approximations , 1999 .

[2]  B. Zhang,et al.  CO2 capture properties of M―C―O―H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study , 2011 .

[3]  Y. Idemoto,et al.  Crystal structure of (LixK1-x)2Co3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis , 1998 .

[4]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[5]  H. Pfeiffer,et al.  Effect of Oxygen Addition on the Thermokinetic Properties of CO2 Chemisorption on Li2ZrO3 , 2010 .

[6]  H. Pfeiffer,et al.  Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. , 2010, The journal of physical chemistry. A.

[7]  Masahiro Kato,et al.  CO2 Absorption by Lithium Silicate at Room Temperature , 2004 .

[8]  H. Pfeiffer,et al.  Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis , 2011, Journal of Thermal Analysis and Calorimetry.

[9]  Y. Duan A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture , 2012 .

[10]  M. Rudan,et al.  Band-structure calculations of SiO/sub 2/ by means of Hartree-Fock and density-functional techniques , 2000 .

[11]  Monica Puccini,et al.  High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects , 2011 .

[12]  K. Hesse Refinement of the crystal structure of lithium polysilicate , 1977 .

[13]  S. Clémendot,et al.  Theoretical Study of the MoS2 (100) Surface: A Chemical Potential Analysis of Sulfur and Hydrogen Coverage. 2. Effect of the Total Pressure on Surface Stability , 2002 .

[14]  H. Pfeiffer,et al.  Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O) , 2006 .

[15]  V. Ozoliņš,et al.  First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. , 2009, Journal of the American Chemical Society.

[16]  Masahiro Kato,et al.  Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .

[17]  David R. Luebke,et al.  Advances in CO2 capture technology: A patent review , 2013 .

[18]  H. Pfeiffer,et al.  Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3) , 2006 .

[19]  Y. Duan Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions , 2008 .

[20]  H. Kleykamp,et al.  Phase equilibria in the Li4SiO4Li2SiO3 region of the pseudobinary Li2OSiO2 system , 1996 .

[21]  Statistical Mechanics: From First Principles to Macroscopic Phenomena , 2006 .

[22]  H. Nowotny,et al.  Die Kristallstruktur der Verbindung Li6[Si2O7] , 1969 .

[23]  D. Vollath,et al.  On the preparation of the lithium siclicates series from Li2SiO3 to Li8SiO6 in alcoholic media , 1986 .

[24]  Y. Duan,et al.  Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications , 2012 .

[25]  W. C. Martin,et al.  Energy levels of magnesium, Mg I through Mg XII , 1980 .

[26]  Jincheng Du,et al.  Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study , 2006 .

[27]  Enrique Lima,et al.  Structural and thermochemical chemisorption of CO2 on Li(4+x)(Si(1-x)Al(x))O4 and Li(4-x)(Si(1-x)V(x))O4 solid solutions. , 2012, The journal of physical chemistry. A.

[28]  F. Birch Finite Elastic Strain of Cubic Crystals , 1947 .

[29]  Trevor C. Drage,et al.  Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures , 2010 .

[30]  A. Spek,et al.  Low-temperature structure of lithium nesosilicate, Li4SiO4, and its Li1s and O1s X-ray photoelectron spectrum , 1994 .

[31]  Y. S. Lin,et al.  Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .

[32]  M. E. Bretado,et al.  A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent , 2005 .

[33]  José Ortiz-Landeros,et al.  Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation , 2011 .

[34]  K. Nakagawa,et al.  New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High Temperature CO2 Absorbent , 2001 .

[35]  H Grimm,et al.  Phonon dispersion branches in α quartz , 1980 .

[36]  Heriberto Pfeiffer,et al.  TEXTURAL, STRUCTURAL, AND CO2 CHEMISORPTION EFFECTS PRODUCED ON THE LITHIUM ORTHOSILICATE BY ITS DOPING WITH SODIUM (LI4?XNAXSIO4) , 2008 .

[37]  A. West,et al.  The structure of metastable lithium disilicate, Li2Si2O5 , 1990 .

[38]  Y. Duan,et al.  Density functional theory study of CO2 capture with transition metal oxides and hydroxides. , 2012, The Journal of chemical physics.

[39]  健司 越崎,et al.  リチウムシリケートペレットを充填した反応器による高温 CO2 除去 , 2006 .

[40]  Chelikowsky,et al.  Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.

[41]  G. Piazza,et al.  Measurements of the effective thermal conductivity of a Li4SiO4 pebble bed , 2000 .

[42]  J. Yu,et al.  Three-step calcination synthesis of high-purity Li8ZrO6 with CO2 absorption properties. , 2011, Inorganic chemistry.

[43]  Takeo Yamaguchi,et al.  Lithium based ceramic materials and membranes for high temperature CO2 separation , 2009 .

[44]  F. C. Kracek The Binary System Li2O–SiO2 , 1929 .

[45]  克嘉 大石,et al.  熱重量分析を用いた Li4SiO4 の CO2 吸収反応の反応速度論的解析 , 2007 .

[46]  Yunfeng Liang,et al.  Comparison of thermodynamic stabilities and mechanical properties of CO2, SiO2, and GeO2 polymorphs by first-principles calculations. , 2012, The Journal of chemical physics.

[47]  Christopher M Wolverton,et al.  First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .

[48]  Heriberto Pfeiffer,et al.  Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for high-temperature CO2 capture , 2013 .

[49]  K. Munakata,et al.  Ab Initio Study of Electron State in Li4SiO4 Crystal , 2001 .

[50]  H. Pfeiffer,et al.  CO2 Chemisorption and Cyclability Analyses of Lithium Aluminate Polymorphs (α- and β-Li5AlO4) , 2012 .

[51]  Y. Duan,et al.  Density functional theory studies of the structural, electronic, and phonon properties of Li 2 O and Li 2 CO 3 : Application to CO 2 capture reaction , 2009 .

[52]  K. Nakagawa,et al.  A REVERSIBLE CHANGE BETWEEN LITHIUM ZIRCONATE AND ZIRCONIA IN MOLTEN CARBONATE , 1999 .

[53]  T. Yoko,et al.  STRUCTURE AND VIBRATIONAL PROPERTIES OF SODIUM DISILICATE GLASS FROM AB INITIO MOLECULAR ORBITAL CALCULATIONS , 1998 .

[54]  K. Essaki,et al.  Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets , 2005 .

[55]  John P. Baltrus,et al.  Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide , 2008 .

[56]  H. Pfeiffer,et al.  Microstructural Thermal Evolution of the Na2CO3 Phase Produced during a Na2ZrO3–CO2 Chemisorption Process , 2012 .

[57]  R. Hofmann,et al.  Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4) , 1987 .

[58]  Y. Duan,et al.  CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study. , 2010, The Journal of chemical physics.

[59]  C. Gauer,et al.  Doped lithium orthosilicate for absorption of carbon dioxide , 2006 .

[60]  Ab initiostudies of phonon softening and high-pressure phase transitions ofα-quartzSiO2 , 2006, cond-mat/0601489.

[61]  F. Liebau Untersuchungen an Schichtsilikaten des Formeltyps Am(Si2O5)n. I. Die Kristallstruktur der Zimmertemperaturform des Li2Si2O5 , 1961 .

[62]  Yuehe Lin,et al.  Synthesis and CO2 sorption properties of pure and modified lithium zirconate , 2004 .

[63]  H. Pfeiffer,et al.  Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. , 2009, The journal of physical chemistry. A.

[64]  Xiangchun Yin,et al.  High-Temperature CO2 Capture on Li6Zr2O7: Experimental and Modeling Studies , 2010 .

[65]  R. Kaindl,et al.  Li2Si3O7: Crystal structure and Raman spectroscopy , 2007 .

[66]  D. Vollath,et al.  Research and development work for the lithium orthosilicate pebbles for the Karlsruhe ceramic breeder blanket , 1991 .

[67]  Y. Duan,et al.  Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li 4 SiO 4 and its capability for CO 2 capture , 2011 .

[68]  S. Hull,et al.  The elastic properties of lithium oxide and their variation with temperature , 1988 .

[69]  T. Ohashi,et al.  A Novel Method of CO 2 Capture from High Temperature Gases , 1998 .

[70]  Chuguang Zheng,et al.  High temperature capture of CO2 on lithium-based sorbents from rice husk ash. , 2011, Journal of hazardous materials.

[71]  B. Sharma,et al.  Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2 sequestration , 2006 .

[72]  Yuhua Duan,et al.  Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach. , 2013, Physical chemistry chemical physics : PCCP.

[73]  T. Yoko,et al.  Sodium and Lithium Environments in Single- and Mixed-Alkali Silicate Glasses. An ab Initio Molecular Orbital Study , 1999 .

[74]  J. D. Jorgensen,et al.  Crystal structure and thermal expansion of α‐quartz SiO2 at low temperatures , 1982 .

[75]  King,et al.  Pressure dependence of the structural properties of alpha -quartz near the amorphous transition. , 1991, Physical review. B, Condensed matter.

[76]  Liyu Li,et al.  Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal , 2013 .

[77]  Jincheng Du,et al.  Structure, dynamics, and electronic properties of lithium disilicate melt and glass. , 2006, The Journal of chemical physics.

[78]  Y. Duan Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: A first-principles density-functional theory and phonon dynamics approach , 2011 .

[79]  H. Pfeiffer,et al.  CO2 Absorption on Na2ZrO3: A Kinetic Analysis of the Chemisorption and Diffusion Processes , 2008 .

[80]  H. Pfeiffer,et al.  Kinetic and Reaction Mechanism of CO2 Sorption on Li4SiO4: Study of the Particle Size Effect , 2007 .

[81]  Li,et al.  Electronic structures of lithium metasilicate and lithium disilicate. , 1985, Physical review. B, Condensed matter.

[82]  K. Oh-ishi,et al.  Particle size dependence of CO2 absorption rate of powdered Li4SiO4 with different particle size , 2008 .

[83]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[84]  Z. Qi,et al.  Analysis of CO2 sorption/desorption kinetic behaviors and reaction mechanisms on Li4SiO4 , 2013 .

[85]  Yukishige Maezawa,et al.  Novel CO2 Absorbents Using Lithium‐Containing Oxide , 2005 .

[86]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[87]  H. Migge Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system , 1988 .

[88]  T. Yamaguchi,et al.  Lithium silicate based membranes for high temperature CO2 separation , 2007 .

[89]  A. López-Ortiz,et al.  Novel Carbon Dioxide Solid Acceptors Using Sodium Containing Oxides , 2005 .