CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach.
暂无分享,去创建一个
Bingyun Li | Yuhua Duan | Heriberto Pfeiffer | J. W. Halley | Y. Duan | D. Sorescu | I. Romero-Ibarra | H. Pfeiffer | Bingyun Li | D. Luebke | Dan C Sorescu | Issis C Romero-Ibarra | David R Luebke | J Woods Halley
[1] János G. Ángyán,et al. Polymorphism in silica studied in the local density and generalized-gradient approximations , 1999 .
[2] B. Zhang,et al. CO2 capture properties of M―C―O―H (M=Li, Na, K) systems: A combined density functional theory and lattice phonon dynamics study , 2011 .
[3] Y. Idemoto,et al. Crystal structure of (LixK1-x)2Co3 (x = 0, 0.43, 0.5, 0.62, 1) by neutron powder diffraction analysis , 1998 .
[4] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[5] H. Pfeiffer,et al. Effect of Oxygen Addition on the Thermokinetic Properties of CO2 Chemisorption on Li2ZrO3 , 2010 .
[6] H. Pfeiffer,et al. Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. , 2010, The journal of physical chemistry. A.
[7] Masahiro Kato,et al. CO2 Absorption by Lithium Silicate at Room Temperature , 2004 .
[8] H. Pfeiffer,et al. Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis , 2011, Journal of Thermal Analysis and Calorimetry.
[9] Y. Duan. A first-principles density functional theory study of the electronic structural and thermodynamic properties of M2ZrO3 and M2CO3 (M=Na, K) and their capabilities for CO2 capture , 2012 .
[10] M. Rudan,et al. Band-structure calculations of SiO/sub 2/ by means of Hartree-Fock and density-functional techniques , 2000 .
[11] Monica Puccini,et al. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects , 2011 .
[12] K. Hesse. Refinement of the crystal structure of lithium polysilicate , 1977 .
[13] S. Clémendot,et al. Theoretical Study of the MoS2 (100) Surface: A Chemical Potential Analysis of Sulfur and Hydrogen Coverage. 2. Effect of the Total Pressure on Surface Stability , 2002 .
[14] H. Pfeiffer,et al. Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O) , 2006 .
[15] V. Ozoliņš,et al. First-principles prediction of thermodynamically reversible hydrogen storage reactions in the Li-Mg-Ca-B-H system. , 2009, Journal of the American Chemical Society.
[16] Masahiro Kato,et al. Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .
[17] David R. Luebke,et al. Advances in CO2 capture technology: A patent review , 2013 .
[18] H. Pfeiffer,et al. Kinetic analysis of the thermal stability of lithium silicates (Li4SiO4 and Li2SiO3) , 2006 .
[19] Y. Duan. Electronic properties and stabilities of bulk and low-index surfaces of SnO in comparison with SnO2: A first-principles density functional approach with an empirical correction of van der Waals interactions , 2008 .
[20] H. Kleykamp,et al. Phase equilibria in the Li4SiO4Li2SiO3 region of the pseudobinary Li2OSiO2 system , 1996 .
[21] Statistical Mechanics: From First Principles to Macroscopic Phenomena , 2006 .
[22] H. Nowotny,et al. Die Kristallstruktur der Verbindung Li6[Si2O7] , 1969 .
[23] D. Vollath,et al. On the preparation of the lithium siclicates series from Li2SiO3 to Li8SiO6 in alcoholic media , 1986 .
[24] Y. Duan,et al. Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications , 2012 .
[25] W. C. Martin,et al. Energy levels of magnesium, Mg I through Mg XII , 1980 .
[26] Jincheng Du,et al. Compositional dependence of the first sharp diffraction peaks in alkali silicate glasses: A molecular dynamics study , 2006 .
[27] Enrique Lima,et al. Structural and thermochemical chemisorption of CO2 on Li(4+x)(Si(1-x)Al(x))O4 and Li(4-x)(Si(1-x)V(x))O4 solid solutions. , 2012, The journal of physical chemistry. A.
[28] F. Birch. Finite Elastic Strain of Cubic Crystals , 1947 .
[29] Trevor C. Drage,et al. Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures , 2010 .
[30] A. Spek,et al. Low-temperature structure of lithium nesosilicate, Li4SiO4, and its Li1s and O1s X-ray photoelectron spectrum , 1994 .
[31] Y. S. Lin,et al. Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .
[32] M. E. Bretado,et al. A new synthesis route to Li4SiO4 as CO2 catalytic/sorbent , 2005 .
[33] José Ortiz-Landeros,et al. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation , 2011 .
[34] K. Nakagawa,et al. New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High Temperature CO2 Absorbent , 2001 .
[35] H Grimm,et al. Phonon dispersion branches in α quartz , 1980 .
[36] Heriberto Pfeiffer,et al. TEXTURAL, STRUCTURAL, AND CO2 CHEMISORPTION EFFECTS PRODUCED ON THE LITHIUM ORTHOSILICATE BY ITS DOPING WITH SODIUM (LI4?XNAXSIO4) , 2008 .
[37] A. West,et al. The structure of metastable lithium disilicate, Li2Si2O5 , 1990 .
[38] Y. Duan,et al. Density functional theory study of CO2 capture with transition metal oxides and hydroxides. , 2012, The Journal of chemical physics.
[39] 健司 越崎,et al. リチウムシリケートペレットを充填した反応器による高温 CO2 除去 , 2006 .
[40] Chelikowsky,et al. Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.
[41] G. Piazza,et al. Measurements of the effective thermal conductivity of a Li4SiO4 pebble bed , 2000 .
[42] J. Yu,et al. Three-step calcination synthesis of high-purity Li8ZrO6 with CO2 absorption properties. , 2011, Inorganic chemistry.
[43] Takeo Yamaguchi,et al. Lithium based ceramic materials and membranes for high temperature CO2 separation , 2009 .
[44] F. C. Kracek. The Binary System Li2O–SiO2 , 1929 .
[45] 克嘉 大石,et al. 熱重量分析を用いた Li4SiO4 の CO2 吸収反応の反応速度論的解析 , 2007 .
[46] Yunfeng Liang,et al. Comparison of thermodynamic stabilities and mechanical properties of CO2, SiO2, and GeO2 polymorphs by first-principles calculations. , 2012, The Journal of chemical physics.
[47] Christopher M Wolverton,et al. First‐Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li‐Mg‐N‐H System , 2007 .
[48] Heriberto Pfeiffer,et al. Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for high-temperature CO2 capture , 2013 .
[49] K. Munakata,et al. Ab Initio Study of Electron State in Li4SiO4 Crystal , 2001 .
[50] H. Pfeiffer,et al. CO2 Chemisorption and Cyclability Analyses of Lithium Aluminate Polymorphs (α- and β-Li5AlO4) , 2012 .
[51] Y. Duan,et al. Density functional theory studies of the structural, electronic, and phonon properties of Li 2 O and Li 2 CO 3 : Application to CO 2 capture reaction , 2009 .
[52] K. Nakagawa,et al. A REVERSIBLE CHANGE BETWEEN LITHIUM ZIRCONATE AND ZIRCONIA IN MOLTEN CARBONATE , 1999 .
[53] T. Yoko,et al. STRUCTURE AND VIBRATIONAL PROPERTIES OF SODIUM DISILICATE GLASS FROM AB INITIO MOLECULAR ORBITAL CALCULATIONS , 1998 .
[54] K. Essaki,et al. Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets , 2005 .
[55] John P. Baltrus,et al. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide , 2008 .
[56] H. Pfeiffer,et al. Microstructural Thermal Evolution of the Na2CO3 Phase Produced during a Na2ZrO3–CO2 Chemisorption Process , 2012 .
[57] R. Hofmann,et al. Ein neues Oxogermanat: Li8GeO6 = Li8O2[GeO4]. (Mit einer Bemerkung über Li8SiO6 und Li4GeO4) , 1987 .
[58] Y. Duan,et al. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study. , 2010, The Journal of chemical physics.
[59] C. Gauer,et al. Doped lithium orthosilicate for absorption of carbon dioxide , 2006 .
[60] Ab initiostudies of phonon softening and high-pressure phase transitions ofα-quartzSiO2 , 2006, cond-mat/0601489.
[61] F. Liebau. Untersuchungen an Schichtsilikaten des Formeltyps Am(Si2O5)n. I. Die Kristallstruktur der Zimmertemperaturform des Li2Si2O5 , 1961 .
[62] Yuehe Lin,et al. Synthesis and CO2 sorption properties of pure and modified lithium zirconate , 2004 .
[63] H. Pfeiffer,et al. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. , 2009, The journal of physical chemistry. A.
[64] Xiangchun Yin,et al. High-Temperature CO2 Capture on Li6Zr2O7: Experimental and Modeling Studies , 2010 .
[65] R. Kaindl,et al. Li2Si3O7: Crystal structure and Raman spectroscopy , 2007 .
[66] D. Vollath,et al. Research and development work for the lithium orthosilicate pebbles for the Karlsruhe ceramic breeder blanket , 1991 .
[67] Y. Duan,et al. Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of Li 4 SiO 4 and its capability for CO 2 capture , 2011 .
[68] S. Hull,et al. The elastic properties of lithium oxide and their variation with temperature , 1988 .
[69] T. Ohashi,et al. A Novel Method of CO 2 Capture from High Temperature Gases , 1998 .
[70] Chuguang Zheng,et al. High temperature capture of CO2 on lithium-based sorbents from rice husk ash. , 2011, Journal of hazardous materials.
[71] B. Sharma,et al. Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: Scope for CO2 sequestration , 2006 .
[72] Yuhua Duan,et al. Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach. , 2013, Physical chemistry chemical physics : PCCP.
[73] T. Yoko,et al. Sodium and Lithium Environments in Single- and Mixed-Alkali Silicate Glasses. An ab Initio Molecular Orbital Study , 1999 .
[74] J. D. Jorgensen,et al. Crystal structure and thermal expansion of α‐quartz SiO2 at low temperatures , 1982 .
[75] King,et al. Pressure dependence of the structural properties of alpha -quartz near the amorphous transition. , 1991, Physical review. B, Condensed matter.
[76] Liyu Li,et al. Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal , 2013 .
[77] Jincheng Du,et al. Structure, dynamics, and electronic properties of lithium disilicate melt and glass. , 2006, The Journal of chemical physics.
[78] Y. Duan. Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: A first-principles density-functional theory and phonon dynamics approach , 2011 .
[79] H. Pfeiffer,et al. CO2 Absorption on Na2ZrO3: A Kinetic Analysis of the Chemisorption and Diffusion Processes , 2008 .
[80] H. Pfeiffer,et al. Kinetic and Reaction Mechanism of CO2 Sorption on Li4SiO4: Study of the Particle Size Effect , 2007 .
[81] Li,et al. Electronic structures of lithium metasilicate and lithium disilicate. , 1985, Physical review. B, Condensed matter.
[82] K. Oh-ishi,et al. Particle size dependence of CO2 absorption rate of powdered Li4SiO4 with different particle size , 2008 .
[83] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[84] Z. Qi,et al. Analysis of CO2 sorption/desorption kinetic behaviors and reaction mechanisms on Li4SiO4 , 2013 .
[85] Yukishige Maezawa,et al. Novel CO2 Absorbents Using Lithium‐Containing Oxide , 2005 .
[86] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[87] H. Migge. Estimation of free energies for Li8SiO6 and Li4SiO4 and calculation of the phase diagram of the Li-Si-O system , 1988 .
[88] T. Yamaguchi,et al. Lithium silicate based membranes for high temperature CO2 separation , 2007 .
[89] A. López-Ortiz,et al. Novel Carbon Dioxide Solid Acceptors Using Sodium Containing Oxides , 2005 .