A nonlinear acoustic metamaterial beam with tunable flexural wave band gaps

[1]  C. Gerada,et al.  Experimental investigation of mechanical, acoustic and hybrid metamaterial designs for enhanced and multi-band electric motor noise dissipation , 2022, Engineering Structures.

[2]  Wenjie Guo,et al.  Enhanced vibration suppression using diatomic acoustic metamaterial with negative stiffness mechanism , 2022, Engineering Structures.

[3]  S. Hosseini,et al.  Automated design of phononic crystals under thermoelastic wave propagation through deep reinforcement learning , 2022, Engineering Structures.

[4]  W. Desmet,et al.  The use of locally resonant metamaterials to reduce flow-induced noise and vibration , 2022, Journal of Sound and Vibration.

[5]  J. Yoon,et al.  Vibration reduction of cables with pendulum-type elastic metamaterials , 2022, International Journal of Mechanical Sciences.

[6]  Jian Yang,et al.  Energy flow and performance of a nonlinear vibration isolator exploiting geometric nonlinearity by embedding springs in linkages , 2022, Acta Mechanica.

[7]  P. Baragatti,et al.  Experimental investigation for the existence of frequency band gap in a microstructure model , 2021, Mathematics and Mechanics of Complex Systems.

[8]  X. Ren,et al.  Based on auxetic foam: A novel type of seismic metamaterial for Lamb waves , 2021, Engineering Structures.

[9]  Wei-qiu Chen,et al.  Impact mitigation performance of hybrid metamaterial with a low frequency bandgap , 2021, International Journal of Mechanical Sciences.

[10]  L. Zuo,et al.  Tuned nonlinear spring-inerter-damper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model , 2021 .

[11]  Jensen Li,et al.  Acoustic metamaterials , 2021, Journal of Applied Physics.

[12]  Chuanyu Wu,et al.  An enhanced dual-resonator metamaterial beam for low-frequency vibration suppression , 2021 .

[13]  H. Guergouri,et al.  On the dynamics of spinning particle in nonlinear relativity , 2021 .

[14]  Qian Li,et al.  Fibrous scaffold with a tunable nonlinear elasticity , 2021 .

[15]  J. Tsay Feasibility Study of Super-Long Span Bridges Considering Aerostatic Instability by a Two-Stage Geometric Nonlinear Analysis , 2020 .

[16]  L. Jacobs,et al.  Nonlinear Rayleigh waves to evaluate plasticity damage in X52 pipeline material , 2020 .

[17]  Kang-le Wang Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system , 2020 .

[18]  Jianke Du,et al.  Revealing the Linear and Nonlinear Dynamic Behaviors of Metabeams With a Dynamic Homogenization Model , 2020 .

[19]  A. Banerjee Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators , 2020 .

[20]  Yuesheng Wang,et al.  Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method , 2020 .

[21]  Harold S. Park,et al.  Valley-dependent topologically protected elastic waves using continuous graphene membranes on patterned substrates. , 2020, Nanoscale.

[22]  A. Banerjee,et al.  Waves in Structured Mediums or Metamaterials: A Review , 2019 .

[23]  J. Beugnot,et al.  Nonlinear elasticity of silica nanofiber , 2019, APL Photonics.

[24]  Choon-Su Park,et al.  Two-dimensional octagonal phononic crystals for highly dense piezoelectric energy harvesting , 2019, Nano Energy.

[25]  A. Misra,et al.  Frequency band gaps in dielectric granular metamaterials modulated by electric field , 2019, Mechanics Research Communications.

[26]  Guoliang Huang,et al.  Wave propagation in a nonlinear acoustic metamaterial beam considering third harmonic generation , 2018, New Journal of Physics.

[27]  Jie Yang,et al.  Wave propagation in viscoelastic phononic crystal rods with internal resonators , 2018, Applied Acoustics.

[28]  Xiaodong Wang,et al.  A new two-dimensional elastic metamaterial system with multiple local resonances , 2018, International Journal of Mechanical Sciences.

[29]  Luca Placidi,et al.  Discrete and continuous aspects of some metamaterial elastic structures with band gaps , 2018, Archive of Applied Mechanics.

[30]  Guoliang Huang,et al.  Actively tunable transverse waves in soft membrane-type acoustic metamaterials , 2018 .

[31]  Zhuo Xu,et al.  The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials , 2017 .

[32]  M. Först,et al.  Probing the interatomic potential of solids with strong-field nonlinear phononics , 2017, Nature.

[33]  Yong Li,et al.  Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate , 2017 .

[34]  Zuo Shu-guang,et al.  Studies of band gaps in flexural vibrations of a locally resonant beam with novel multi-oscillator configuration , 2017 .

[35]  R. Das,et al.  Acoustic metamaterials with coupled local resonators for broadband vibration suppression , 2017 .

[36]  Daolin Xu,et al.  Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams , 2017 .

[37]  H. A. Navarro,et al.  Damping coefficient and contact duration relations for continuous nonlinear spring-dashpot contact model in DEM , 2016 .

[38]  Mickaël Lallart,et al.  Damping of periodic bending structures featuring nonlinearly interfaced piezoelectric elements , 2016 .

[39]  D. Guyomar,et al.  Electron–phonon metamaterial featuring nonlinear tri-interleaved piezoelectric topologies and its application in low-frequency vibration control , 2016 .

[40]  Jung-San Chen,et al.  Wave Propagation in Sandwich Structures With Multiresonators , 2016 .

[41]  Chiara Daraio,et al.  Unidirectional Transition Waves in Bistable Lattices. , 2016, Physical review letters.

[42]  P. Sheng,et al.  Acoustic metamaterials: From local resonances to broad horizons , 2016, Science Advances.

[43]  R. Craster,et al.  Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances , 2016, Scientific Reports.

[44]  Rongqiang Liu,et al.  Vibration band gaps in double-vibrator pillared phononic crystal plate , 2016 .

[45]  Hao Peng,et al.  Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression , 2015 .

[46]  Chiara Daraio,et al.  Wide band-gap seismic metastructures , 2015 .

[47]  V. Nesterenko,et al.  Attenuation of short strongly nonlinear stress pulses in dissipative granular chains. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  B. Sharma,et al.  Local resonance and Bragg bandgaps in sandwich beams containing periodically inserted resonators , 2015, 1503.09048.

[49]  F. Romeo,et al.  Periodic and localized solutions in chains of oscillators with softening or hardening cubic nonlinearity , 2015 .

[50]  Feng Li,et al.  Highly nonlinear wave propagation in elastic woodpile periodic structures. , 2014, Physical review letters.

[51]  S. Owczarek,et al.  Existence of solution for a nonlinear model of thermo‐visco‐plasticity , 2014, 1408.2663.

[52]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[53]  C. Sun,et al.  A chiral elastic metamaterial beam for broadband vibration suppression , 2014 .

[54]  Mohamed Ichchou,et al.  Multi-modal wave propagation in smart structures with shunted piezoelectric patches , 2013 .

[55]  Jihong Wen,et al.  Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms , 2013 .

[56]  Bhisham Sharma,et al.  Dynamic behaviour of sandwich structure containing spring-mass resonators , 2011 .

[57]  A. Norris,et al.  Elastic cloaking theory , 2011, 1103.6045.

[58]  王刚,et al.  Band gap control of phononic beam with negative capacitance piezoelectric shunt , 2011 .

[59]  M. Badreddine Assouar,et al.  Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate , 2010 .

[60]  M. Porter,et al.  Discrete breathers in one-dimensional diatomic granular crystals. , 2009, Physical review letters.

[61]  Zhengyou Liu,et al.  Theoretical study of subwavelength imaging by acoustic metamaterial slabs , 2009, 0905.3866.

[62]  Xiaodong Xu,et al.  A tunable acoustic filter made by periodical structured materials , 2009 .

[63]  B. Guo Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal , 2009 .

[64]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[65]  C. Daraio,et al.  Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Bahram Djafari-Rouhani,et al.  Stopping and filtering waves in phononic circuits , 2004 .

[67]  Abdelkrim Khelif,et al.  Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials , 2003 .

[68]  Wei Zhang,et al.  Global Analysis for a nonlinear Vibration Absorber with Fast and Slow Modes , 2001, Int. J. Bifurc. Chaos.

[69]  Oleg V. Gendelman,et al.  Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators , 2001 .

[70]  Alexander F. Vakakis,et al.  Inducing Passive Nonlinear Energy Sinks in Vibrating Systems , 2001 .

[71]  Sheng,et al.  Locally resonant sonic materials , 2000, Science.

[72]  S. Satpathy,et al.  ELECTROMAGNETIC WAVE PROPAGATION IN PERIODIC DIELECTRIC MEDIA: THE PHOTONIC BAND STRUCTURE , 1991 .

[73]  Yi-Ze Wang,et al.  Tunable nonreciprocal transmission in nonlinear elastic wave metamaterial by initial stresses , 2020 .

[74]  G. Hu,et al.  Elastic metamaterials with local resonances: an overview , 2012 .

[75]  Mahmoud I. Hussein,et al.  Wave Motion in Periodic Flexural Beams and Characterization of the Transition Between Bragg Scattering and Local Resonance , 2012 .

[76]  Xiaobo Yin,et al.  A holey-structured metamaterial for acoustic deep-subwavelength imaging , 2011 .

[77]  Lien-Wen Chen,et al.  The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer , 2008 .