Generalised powerlocales via relation lifting

This paper introduces an endofunctor VT on the category of frames that is parametrised by an endofunctor T on the category Set that satisfies certain constraints. This generalises Johnstone's construction of the Vietoris powerlocale in the sense that his construction is obtained by taking for T the finite covariant power set functor. Our construction of the T-powerlocale VT out of a frame is based on ideas from coalgebraic logic and makes explicit the connection between the Vietoris construction and Moss's coalgebraic cover modality. We show how to extend certain natural transformations between set functors to natural transformations between T-powerlocale functors. Finally, we prove that the operation VT preserves some properties of frames, such as regularity, zero-dimensionality and the combination of zero-dimensionality and compactness.

[1]  Lawrence S. Moss,et al.  Vicious circles - on the mathematics of non-wellfounded phenomena , 1996, CSLI lecture notes series.

[2]  Peter Aczel,et al.  Non-well-founded sets , 1988, CSLI lecture notes series.

[3]  Frank Wolter,et al.  Advances in Modal Logic 3 , 2002 .

[4]  J. Bell STONE SPACES (Cambridge Studies in Advanced Mathematics 3) , 1987 .

[5]  Alessandra Palmigiano,et al.  Proof systems for the coalgebraic cover modality , 2008, Advances in Modal Logic.

[6]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[7]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[8]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[9]  Alessandra Palmigiano,et al.  Nabla Algebras and Chu Spaces , 2007, CALCO.

[10]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[11]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[12]  Corina Cîrstea,et al.  Modal Logics are Coalgebraic , 2008, Comput. J..

[13]  S. Lane Categories for the Working Mathematician , 1971 .

[14]  Steven J. Vickers,et al.  A universal characterization of the double powerlocale , 2004, Theor. Comput. Sci..

[15]  Vera Trnková,et al.  Relational Automata ina Category and their Language , 1977, FCT.

[16]  S. Lack,et al.  The formal theory of monads II , 2002 .

[17]  Yde Venema,et al.  Completeness for the coalgebraic cover modality , 2012, Log. Methods Comput. Sci..

[18]  S. Vickers Topology via Logic , 1989 .

[19]  Alexander Kurz,et al.  Algebra and Coalgebra in Computer Science, Third International Conference, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings , 2009, CALCO.

[20]  Yde Venema,et al.  Completeness of the finitary Moss logic , 2008, Advances in Modal Logic.

[21]  Steven Vickers,et al.  Constructive points of powerlocales , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Jenny Donovan,et al.  “Vicious Circles” , 2014, Qualitative health research.

[23]  A. Carboni,et al.  PREFRAME PRESENTATIONS PRESENT , 1991 .

[24]  Igor Walukiewicz,et al.  Automata for the Modal mu-Calculus and related Results , 1995, MFCS.

[25]  Yde Venema Automata and fixed point logic: A coalgebraic perspective , 2006, Inf. Comput..

[26]  Clemens Kupke,et al.  Finitary coalgebraic logics , 2006 .

[27]  Christian Kissig,et al.  Complementation of Coalgebra Automata , 2009, CALCO.

[28]  Steven J. Vickers,et al.  Presenting Dcpos and Dcpo Algebras , 2008, MFPS.

[29]  Steven J. Vickers,et al.  Compactness in locales and in formal topology , 2006, Ann. Pure Appl. Log..

[30]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[31]  L. Vietoris,et al.  Bereiche zweiter Ordnung , 1922 .

[32]  Fenrong Liu,et al.  Games at the Institute for Logic, Language and Computation , 2005 .