Successful melting and density measurements of Cu and Ag single crystals with an electrostatic levitation (ESL) system

We report the successful melting and high-temperature liquid density measurements of grain-free single copper and silver crystals, using electrostatic levitation (ESL), for the first time. The melting of Cu and Ag using ESL has not been reported to date due to the unusual charge instability of these samples at high temperatures. We report here an improved levitation stability during heating when using single-crystal specimens. These results will aid the development and further study of industrially important Cu- and Ag-based materials, by indicating the key physical properties of their liquid phases.

[1]  Ji Young Kim,et al.  Abnormal drop in electrical resistivity with impurity doping of single-crystal Ag , 2014, Scientific Reports.

[2]  W. Rhim,et al.  Materials properties measurements and particle beam interactions studies using electrostatic levitation , 2014 .

[3]  J. Okada,et al.  Viscosity of molten Mo, Ta, Os, Re, and W measured by electrostatic levitation , 2013 .

[4]  Cheolmin Park,et al.  Crystal–liquid interfacial free energy and thermophysical properties of pure liquid Ti using electrostatic levitation: Hypercooling limit, specific heat, total hemispherical emissivity, density, and interfacial free energy , 2013 .

[5]  D. Kang,et al.  Crystal–Liquid Interfacial Free Energy of Supercooled Liquid Fe Using a Containerless Technique , 2013 .

[6]  M. Ajmal,et al.  Fabrication of the best conductor from single-crystal copper and the contribution of grain boundaries to the Debye temperature , 2012 .

[7]  S. J. Kim,et al.  Improving the precision of Hall effect measurements using a single-crystal copper probe. , 2012, The Review of scientific instruments.

[8]  N. Sobczak,et al.  Thermophysical Properties of Ag and Ag–Cu Liquid Alloys at 1098K to 1573K , 2010 .

[9]  H. Pak,et al.  Copper Better than Silver: Electrical Resistivity of the Grain-Free Single-Crystal Copper Wire , 2010 .

[10]  S. Klein,et al.  Crystal nucleation in undercooled liquid zirconium , 2009 .

[11]  P. Paradisa,et al.  Density of liquid gold measured by a non-contact technique , 2008 .

[12]  J. R. Rogers,et al.  Local structure of equilibrium and supercooled Ti-Zr-Ni liquids , 2008 .

[13]  J. Brillo,et al.  Density and Thermal Expansion of Liquid Ag–Cu and Ag–Au Alloys , 2006 .

[14]  P. Fima,et al.  The Surface Tension and Density of Liquid Ag–Bi, Ag–Sn, and Bi–Sn Alloys , 2005 .

[15]  Shinichi Yoda,et al.  Physical properties of liquid and undercooled tungsten by levitation techniques , 2005 .

[16]  J. Brillo,et al.  Density Determination of Liquid Copper, Nickel, and Their Alloys , 2003 .

[17]  S. Yoda,et al.  Thermophysical Property Measurements of Supercooled and Liquid Rhodium , 2003 .

[18]  W. Gasior,et al.  Surface tension and thermodynamic properties of liquid Ag-Bi solutions , 2003 .

[19]  S. Hong,et al.  Microstructural stability and mechanical response of Cu–Ag microcomposite wires , 1998 .

[20]  H. Schneider-Muntau,et al.  Ultra-high strength, high conductivity Cu-Ag alloy wires , 1997 .

[21]  Hiroshi Maeda,et al.  High-Field Pulsed Magnet Wound of Cu-Ag Alloy Wire , 1993 .

[22]  L. Martin-Garin,et al.  Masses volumiques de l'argent, du germanium et des alliages Ag-Ge à l'etat liquide , 1975 .

[23]  F. Sauerwald,et al.  Dichtemessungen bei hohen Temperaturen Über die Dichte des flüssigen Goldes und flüssiger Gold‐Kupfer‐ und Silber–Kupferlegierungen , 1929 .