Finite-dimensional contact mechanics

In this paper, the continuous and numerical formulations of rigid–body dynamics based on measure differential inclusions and time–stepping methods recently developed are described and extended to include a finite number of elastic modes of vibration. The time-stepping methods already incorporate Coulomb friction, and are able to handle situations such as PainlevÉ's famous problem where impulsive forces occur without a collision. The elastic modes of vibration can be incorporated directly into the continuous formulation, but due to the stiffness typical of elastic vibrations, the numerical methods used need to be modified to incorporate them directly. The resulting numerical methods are dissipative in the limit, but only dissipate energy while there is contact.

[1]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[2]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[3]  C. Coulomb Théorie des machines simples, en ayant égard au frottement de leurs parties et a la roideur des cordages , 1968 .

[4]  K. Taubert Differenzenverfahren für gewöhnliche Anfangswertaufgaben mit unstetiger rechter seite , 1974 .

[5]  K. Taubert Differenzverfahren für Schwingungen mit trockener und zäher Reibung und für Regelungssysteme , 1976 .

[6]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[7]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[8]  J. T. Oden,et al.  Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws , 1987 .

[9]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[10]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[11]  Robert G. Muncaster,et al.  The theory of pseudo-rigid bodies , 1988 .

[12]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[13]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[14]  D. Stewart High Accuracy Numerical Methods for Ordinary Differential Equations with Discontinuous Right-hand Side , 1990, Bulletin of the Australian Mathematical Society.

[15]  Alois Kastner-Maresch Implicit Runge-Kutta methods for differential inclusions , 1990 .

[16]  G. Isac Complementarity Problems , 1992 .

[17]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[18]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[19]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[20]  J. Jarusek,et al.  Dynamic contact problems with friction in linear viscoelasticity , 1996 .

[21]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[22]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[23]  D. Stewart,et al.  Time-stepping for three-dimensional rigid body dynamics , 1999 .

[24]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[25]  Existence results for a class of implicit evolution inequalities and applications to dynamic unilateral contact problems with frictionRésultats d'existence pour une classe d'inéquations implicites d'évolution et applications à des problèmes de contact avec frottement , 1999 .

[26]  D. Stewart,et al.  A unified approach to discrete frictional contact problems , 1999 .

[27]  M. Pascal,et al.  A Pseudo-Rigid Model for the Dynamical Simulation of Flexible Mechanisms , 1999 .

[28]  B. Brogliato,et al.  New results on Painlevé paradoxes , 1999 .

[29]  J. Jarusek,et al.  DYNAMIC CONTACT PROBLEMS WITH SMALL COULOMB FRICTION FOR VISCOELASTIC BODIES: EXISTENCE OF SOLUTIONS , 1999 .

[30]  A. Chatterjee On the Realism of Complementarity Conditions in Rigid Body Collisions , 1999 .

[31]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[32]  Impact of an elastic pseudo-rigid body on a rigid foundation , 2000 .

[33]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[34]  D. Stewart Formulating Measure Differential Inclusions in Infinite Dimensions , 2000 .