The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas

In this paper we study the asymptotic behavior of globally smooth solutions of the Cauchy problem for the non-isentropic Euler-Maxwell equations arising in plasmas. We prove that smooth solutions (close to equilibrium) of the problem converge to a stationary solution as t->+~.

[1]  Shu Wang,et al.  Relaxation Limit and Global Existence of Smooth Solutions of Compressible Euler-Maxwell Equations , 2011, SIAM J. Math. Anal..

[2]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[3]  Yong Li,et al.  The diffusive relaxation limit of non-isentropic Euler–Maxwell equations for plasmas , 2011 .

[4]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[5]  Renjun Duan Global Smooth Flows for the Compressible Euler-Maxwell System: Relaxation Case , 2010, 1006.3606.

[6]  Shu Wang,et al.  Dissipative Structure of the Regularity-Loss Type and Time Asymptotic Decay of Solutions for the Euler-Maxwell System , 2012, SIAM J. Math. Anal..

[7]  Yue-Jun Peng,et al.  Convergence of Compressible Euler–Maxwell Equations to Incompressible Euler Equations , 2008 .

[8]  Joseph W. Jerome,et al.  Compressible Euler-Maxwell equations , 2000 .

[9]  Joseph W. Jerome,et al.  The Cauchy problem for compressible hydrodynamic-Maxwell systems: a local theory for smooth solutions , 2003, Differential and Integral Equations.

[10]  Shu Wang,et al.  Rigorous Derivation of Incompressible e-MHD Equations from Compressible Euler-Maxwell Equations , 2008, SIAM J. Math. Anal..

[11]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[12]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .