Potassium Secondary Batteries.

Potassium may exhibit advantages over lithium or sodium as a charge carrier in rechargeable batteries. Analogues of Prussian blue can provide millions of cyclic voltammetric cycles in aqueous electrolyte. Potassium intercalation chemistry has recently been demonstrated compatible with both graphite and nongraphitic carbons. In addition to potassium-ion batteries, potassium-O2 (or -air) and potassium-sulfur batteries are emerging. Additionally, aqueous potassium-ion batteries also exhibit high reversibility and long cycling life. Because of potentially low cost, availability of basic materials, and intriguing electrochemical behaviors, this new class of secondary batteries is attracting much attention. This mini-review summarizes the current status, opportunities, and future challenges of potassium secondary batteries.

[1]  Xiulei Ji,et al.  Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. , 2017, ACS applied materials & interfaces.

[2]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[3]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[4]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[5]  Wangxing Li,et al.  Electrochemical intercalation of potassium into graphite in KF melt , 2010 .

[6]  Hongjie Dai,et al.  Recent advances in zinc-air batteries. , 2014, Chemical Society reviews.

[7]  Russel Fernandes,et al.  The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. , 2015, Nature chemistry.

[8]  Steven J. Thorpe,et al.  A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures , 2007 .

[9]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiCoO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1994 .

[10]  J. L. Gómez‐Cámer,et al.  Optimizing the electrolyte and binder composition for Sodium Prussian Blue, Na1-xFex+(1/3)(CN)6·yH2O, as cathode in sodium ion batteries , 2016 .

[11]  Clement Bommier,et al.  Anode Materials: Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode (Adv. Energy Mater. 3/2016) , 2016 .

[12]  D. Aurbach,et al.  Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions , 2001 .

[13]  H. Udupa,et al.  Zinc—air alkaline batteries — A review , 1981 .

[14]  Si Hyoung Oh,et al.  Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium–O2 batteries. , 2012, Nature chemistry.

[15]  P. Bruce,et al.  A Reversible and Higher-Rate Li-O2 Battery , 2012, Science.

[16]  Fu-Rong Chen,et al.  Improving the durability of Prussian blue based on nano-composite thin film in Li+ based liquid electrolyte , 2007 .

[17]  Y. Marcus Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 3 - Standard potentials of selected electrodes , 1985 .

[18]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[19]  M. Jayalakshmi,et al.  Charge–discharge characteristics of a solid-state Prussian blue secondary cell , 2000 .

[20]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[21]  Steven D. Lacey,et al.  Organic electrode for non-aqueous potassium-ion batteries , 2015 .

[22]  E. Yeager,et al.  The influence of cations on the electrode kinetics of ferricyanide-ferrocyanide system on the rotating gold electrode , 1975 .

[23]  A. Eftekhari A high-voltage solid-state secondary cell based on chromium hexacyanometallates , 2003 .

[24]  W. Jin,et al.  Self-Assembled Films of Prussian Blue and Analogues: Structure and Morphology, Elemental Composition, Film Growth, and Nanosieving of Ions , 2003 .

[25]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[26]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[27]  Y. Moritomo,et al.  Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues , 2013 .

[28]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[29]  Feng Wu,et al.  Sodium titanium hexacyanoferrate as an environmentally friendly and low-cost cathode material for sodium-ion batteries , 2016 .

[30]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[31]  Y. Moritomo,et al.  Fast Discharge Process of Thin Film Electrode of Prussian Blue Analogue , 2012 .

[32]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[33]  M. Isaacson,et al.  Electron-Energy-Loss Study of Stage-1 Potassium- Intercalated Graphite , 1979 .

[34]  M. Jansen,et al.  Zur Kenntnis von KCoO2 und RbCoO2[1] , 1975 .

[35]  D. Stilwell,et al.  Electrochemical studies of the factors influencing the cycle stability of Prussian Blue films , 1992 .

[36]  W. Jin,et al.  Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes , 2003 .

[37]  K. Ho,et al.  Spectroelectrochemical Studies of Indium Hexacyanoferrate Electrodes Prepared by the Sacrificial Anode Method , 1998 .

[38]  Xuanxuan Bi,et al.  Understanding side reactions in K-O2 batteries for improved cycle life. , 2014, ACS applied materials & interfaces.

[39]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[40]  Wei Qu,et al.  A review on air cathodes for zinc–air fuel cells , 2010 .

[41]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[42]  Ping He,et al.  Critical Challenges in Rechargeable Aprotic Li–O2 Batteries , 2016 .

[43]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[44]  M. Berrettoni,et al.  Electrochemistry of KC 8 in Lithium‐Containing Electrolytes and Its Use in Lithium‐Ion Cells , 1997 .

[45]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[46]  Shen-ming Chen,et al.  Investigation of morphologies and characterization of rare earth metal samarium hexacyanoferrate and its composite with surfactant intercalated graphene oxide for sensor applications , 2014 .

[47]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[48]  M. Jayalakshmi,et al.  Performance characteristics of zinc hexacyanoferrate/Prussian blue and copper hexacyanoferrate/Prussian blue solid state secondary cells , 2000 .

[49]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[50]  Y. Moritomo,et al.  Thin Film Electrodes of Prussian Blue Analogues with Rapid Li+ Intercalation , 2012 .

[51]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[52]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[53]  M. Xiong,et al.  A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. , 2015, Chemical communications.

[54]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[55]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[56]  J. Nørskov,et al.  Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. , 2010, The Journal of chemical physics.

[57]  K. Kuwabara,et al.  Rechargeability of solid-state copper cells utilizing cathodes of Prussian blue and Berlin green , 1991 .

[58]  John T. Vaughey,et al.  Rechargeable Ca-Ion Batteries: A New Energy Storage System , 2015 .

[59]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[60]  O. Bondarchuk,et al.  Higher voltage plateau cubic Prussian White for Na-ion batteries , 2016 .

[61]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[62]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[63]  Yuyan Shao,et al.  Making Li‐Air Batteries Rechargeable: Material Challenges , 2013 .

[64]  T. Rojo,et al.  Electrochemical characterization of NaFe2(CN)6 Prussian Blue as positive electrode for aqueous sodium-ion batteries , 2016 .

[65]  M. Armand,et al.  Building better batteries , 2008, Nature.

[66]  Yasuo Takeda,et al.  Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery , 1999 .

[67]  E. Grabner,et al.  Hexacyanoferrate layers as electrodes for secondary cells , 1987 .

[68]  Yunhao Lu,et al.  A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries , 2015 .

[69]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[70]  A secondary battery composed of multilayer Prussian Blue and its reaction characteristics , 1988 .

[71]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[72]  R. Solanki,et al.  Prussian Green: A High Rate Capacity Cathode for Potassium Ion Batteries , 2015 .

[73]  Z. Wen,et al.  A new gridding cyanoferrate anode material for lithium and sodium ion batteries: Ti0.75Fe0.25[Fe(CN)6]0.96·1.9H2O with excellent electrochemical properties , 2016 .

[74]  T. Grande,et al.  Van der Waals density functional study of the energetics of alkali metal intercalation in graphite , 2014 .

[75]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[76]  K. Honda,et al.  Prussian Blue Containing Nafion Composite Film as Rechargeable Battery , 1987 .

[77]  R. Kaner,et al.  Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite , 2007 .

[78]  Y. Liu,et al.  In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. , 2014, Nano letters.

[79]  Min Hao Wong,et al.  One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes. , 2015, Chemical communications.

[80]  Jun Lu,et al.  Progress in Mechanistic Understanding and Characterization Techniques of Li‐S Batteries , 2015 .

[81]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[82]  Shen-ming Chen,et al.  Preparation of Thallium Hexacyanoferrate Film and Mixed-Film Modified Electrodes with Cobalt(II) Hexacyanoferrate , 2005 .

[83]  Y. Moritomo,et al.  Lithium intercalation properties in manganese-iron Prussian blue analogues , 2013 .

[84]  T. Hyeon,et al.  Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries , 2013 .

[85]  T. Abe,et al.  Creation of nanospaces by intercalation of alkali metals into graphite in organic solutions , 2001 .

[86]  Clement Bommier,et al.  Recent Development on Anodes for Na-Ion Batteries , 2015 .

[87]  Jung-Soo Lee,et al.  Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries , 2015 .

[88]  A. Karyakin,et al.  Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications , 2001 .

[89]  S. Taylor,et al.  Abundance of chemical elements in the continental crust: A new table: Geochimica e t Cosmochimica Ac , 1964 .

[90]  A. Eftekhari A new anode material for inorganic-based rechargeable batteries , 2003 .

[91]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[92]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[93]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[94]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[95]  S. Dong,et al.  Spectroelectrochemical studies of indium hexacyanoferrate film modified electrodes , 1990 .

[96]  Ning Zhao,et al.  Long-life Na-O₂ batteries with high energy efficiency enabled by electrochemically splitting NaO₂ at a low overpotential. , 2014, Physical chemistry chemical physics : PCCP.

[97]  A. Virkar,et al.  Synthesis of lithium-beta-alumina by various ion-exchange and conversion processes , 2012 .

[98]  Moritomo Yutaka,et al.  Li+ Intercalation of Manganese Ferrocyanide as Investigated by In situ Valence-Differential Absorption Spectroscopy , 2013 .

[99]  L. David,et al.  Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li and Na Cyclability , 2014 .

[100]  Yi Cui,et al.  Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. , 2012, ACS nano.

[101]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[102]  T. Shibata,et al.  Glucose-Treated Manganese Hexacyanoferrate for Sodium-Ion Secondary Battery , 2015 .

[103]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[104]  Xiaogang Zhang,et al.  Prussian blue analogues: a new class of anode materials for lithium ion batteries , 2014 .

[105]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[106]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[107]  Y. Moritomo,et al.  Cobalt Hexacyanoferrate as Cathode Material for Na+ Secondary Battery , 2013 .

[108]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[109]  Jeannette M Garcia,et al.  Chemical and Electrochemical Differences in Nonaqueous Li-O2 and Na-O2 Batteries. , 2014, The journal of physical chemistry letters.

[110]  A. Eftekhari,et al.  Effect of Na diffusion on the formation of fibrous microcrystals of manganese oxide , 2005 .

[111]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[112]  R. Kaner,et al.  Intercalation and exfoliation routes to graphite nanoplatelets , 2005 .

[113]  Xueping Gao,et al.  Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries , 2015 .

[114]  Hongkyung Lee,et al.  Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. , 2012, Chemical communications.

[115]  Xiaogang Zhang,et al.  High performance lithium–sulfur batteries: advances and challenges , 2014 .

[116]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[117]  M. Okubo,et al.  Ternary metal Prussian blue analogue nanoparticles as cathode materials for Li-ion batteries. , 2013, Dalton transactions.

[118]  Y. Moritomo,et al.  Thin Film Electrode of Prussian Blue Analogue for Li-ion Battery , 2011 .

[119]  E. Plichta,et al.  Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries , 2012 .

[120]  Feng Wu,et al.  Na2NixCo1 − xFe(CN)6: A class of Prussian blue analogs with transition metal elements as cathode materials for sodium ion batteries , 2015 .

[121]  Y. Moritomo,et al.  Structural, Electronic, and Electrochemical Properties of LixCo[Fe(CN)6]0.902.9H2O , 2013 .

[122]  Mark Wild,et al.  Lithium sulfur batteries, a mechanistic review , 2015 .

[123]  Zhan Lin,et al.  Lithium-Sulfur Batteries: from Liquid to Solid Cells? , 2015 .

[124]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[125]  Xin-bo Zhang,et al.  Recent Progress on Stability Enhancement for Cathode in Rechargeable Non‐Aqueous Lithium‐Oxygen Battery , 2015 .

[126]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[127]  R. Solanki,et al.  Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries , 2015 .

[128]  A. Eftekhari Electrochemical behavior and electrocatalytic activity of a zinc hexacyanoferrate film directly modified electrode , 2002 .

[129]  Kingo Itaya,et al.  Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device , 1982 .

[130]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[131]  Shiguo Zhang,et al.  Recent Advances in Electrolytes for Lithium–Sulfur Batteries , 2015 .

[132]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[133]  B. Scrosati,et al.  A PLASTIC KC8/LIMN2O4 LITHIUM-ION BATTERY , 1999 .

[134]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[135]  L. Nazar,et al.  Review—The Importance of Chemical Interactions between Sulfur Host Materials and Lithium Polysulfides for Advanced Lithium-Sulfur Batteries , 2015 .

[136]  Yi Cui,et al.  Manganese-cobalt hexacyanoferrate cathodes for sodium-ion batteries , 2016 .

[137]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[138]  Jun Chen,et al.  Metal—Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts , 2012 .

[139]  Xiulei Ji,et al.  An Organic Pigment as a High‐Performance Cathode for Sodium‐Ion Batteries , 2014 .

[140]  Liangbing Hu,et al.  A perylene anhydride crystal as a reversible electrode for K-ion batteries , 2016 .

[141]  K. Blurton,et al.  Metal/air batteries: Their status and potential — a review , 1979 .

[142]  M. Okubo,et al.  Stepwise Reduction of Electrochemically Lithiated Core–Shell Heterostructures Based on the Prussian Blue Analogue Coordination Polymers K0.1Cu[Fe(CN)6]0.7·3.5H2O and K0.1Ni[Fe(CN)6]0.7·4.4H2O , 2015 .

[143]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[144]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[145]  Jun Wang,et al.  Electrochemical sodium storage of copper hexacyanoferrate with a well-defined open framework for sodium ion batteries , 2014 .

[146]  D. Adair,et al.  Nickel Hexacyanoferrate Nanoparticles as a Low Cost Cathode Material for Lithium-Ion Batteries , 2015 .

[147]  P. Hyldgaard,et al.  Potassium intercalation in graphite: A van der Waals density-functional study , 2007, 0704.0055.

[148]  Ya‐Xia Yin,et al.  Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries , 2014, Nano Research.

[149]  E. Matuyama Successive Stages of a Graphite–Potassium Compound and its Thermal Expansion , 1962, Nature.

[150]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.