Artificial intelligence for forest fire prediction

Forest fire prediction constitutes a significant component of forest fire management. It plays a major role in resource allocation, mitigation and recovery efforts. This paper presents a description and analysis of forest fire prediction methods based on artificial intelligence. A novel forest fire risk prediction algorithm, based on support vector machines, is presented. The algorithm depends on previous weather conditions in order to predict the fire hazard level of a day. The implementation of the algorithm using data from Lebanon demonstrated its ability to accurately predict the hazard of fire occurrence.

[1]  Marco Dorigo,et al.  Learning to Control Forest Fires , 1998 .

[2]  S. Mukherjee,et al.  Forest fire risk zone mapping from satellite imagery and GIS , 2002 .

[3]  Lewis Ntaimo Two-Dimensional Fire Spread Decomposition in Cellular DEVS Models , 2006 .

[4]  Amparo Alonso-Betanzos,et al.  An intelligent system for forest fire risk prediction and fire fighting management in Galicia , 2003, Expert Syst. Appl..

[5]  Alexandre Muzy,et al.  An object oriented environment applied to a semi-physical model of fire spread across a fuel bed , 2001 .

[6]  Adam G. Dunn,et al.  Modelling Wildfire Dynamics via Interacting Automata , 2004, ACRI.

[7]  K. Clarke,et al.  A Cellular Automaton Model of Wildfire Propagation and Extinction , 1994 .

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  Nachman Aronszajn Introduction to the theory of Hilbert spaces , 1950 .

[10]  Jiaqiu Wang,et al.  Integrated Spatio‐temporal Data Mining for Forest Fire Prediction , 2008, Trans. GIS.

[11]  D. Brillinger,et al.  Risk assessment: a forest fire example , 2003 .

[12]  Ioannis Z. Gitas,et al.  A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery , 2004 .

[13]  Lazaros S. Iliadis,et al.  A decision support system applying an integrated fuzzy model for long-term forest fire risk estimation , 2005, Environ. Model. Softw..

[14]  Keun Ho Ryu,et al.  Statistics Based Predictive Geo-spatial Data Mining: Forest Fire Hazardous Area Mapping Application , 2003, APWeb.

[15]  Jiaqiu Wang,et al.  Applications of spatio-temporal data mining and knowledge for forest fire , 2006 .

[16]  P. Cortez,et al.  A data mining approach to predict forest fires using meteorological data , 2007 .

[17]  Yoram J. Kaufman,et al.  A Review of AVHRR-based Active Fire Detection Algorithms: Principles, Limitations, and Recommendations , 2000 .