Optimal Cost-Sharing in Weighted Congestion Games

We identify how to share costs locally in weighted congestion games with polynomial cost functions in order to minimize the worst-case price of anarchy (PoA). First, we prove that among all cost-sharing methods that guarantee the existence of pure Nash equilibria, the Shapley value minimizes the worst-case PoA. Second, if the guaranteed existence condition is dropped, then the proportional cost-sharing method minimizes the worst-case PoA over all cost-sharing methods. As a byproduct of our results, we obtain the first PoA analysis of the simple marginal contribution cost-sharing rule, and prove that marginal cost taxes are ineffective for improving equilibria in (atomic) congestion games.

[1]  H. Moulin The price of anarchy of serial, average and incremental cost sharing , 2008 .

[2]  Tim Roughgarden,et al.  Worst-Case Efficiency Analysis of Queueing Disciplines , 2009, ICALP.

[3]  Chien-Chung Huang,et al.  Preemptive Coordination Mechanisms for Unrelated Machines , 2012, ESA.

[4]  T. Skolem Ein kombinatorischer Satz mit Anwendung auf ein logisches Entscheidungsproblem , 1933 .

[5]  Tobias Harks,et al.  The Worst-Case Efficiency of Cost Sharing Methods in Resource Allocation Games , 2011, Oper. Res..

[6]  Tim Roughgarden,et al.  How bad is selfish routing? , 2002, JACM.

[7]  Christos H. Papadimitriou,et al.  Worst-case equilibria , 1999 .

[8]  Mark de Berg,et al.  Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part I , 2010, ESA.

[9]  Paul G. Spirakis,et al.  Cost-Balancing Tolls for Atomic Network Congestion Games , 2008 .

[10]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[11]  José R. Correa,et al.  Decentralized utilitarian mechanisms for scheduling games , 2015, Games Econ. Behav..

[12]  Nicole Immorlica,et al.  Coordination mechanisms for selfish scheduling , 2005, Theor. Comput. Sci..

[13]  Ioannis Caragiannis,et al.  Efficient Coordination Mechanisms for Unrelated Machine Scheduling , 2009, Algorithmica.

[14]  Allan Borodin,et al.  Price of anarchy for greedy auctions , 2009, SODA '10.

[15]  Max Klimm,et al.  On the Existence of Pure Nash Equilibria in Weighted Congestion Games , 2010, Math. Oper. Res..

[16]  Konstantinos Kollias,et al.  Nonpreemptive Coordination Mechanisms for Identical Machines , 2012, Theory of Computing Systems.

[17]  Leah Epstein,et al.  Algorithms – ESA 2012 , 2012, Lecture Notes in Computer Science.

[18]  Tim Roughgarden,et al.  Restoring Pure Equilibria to Weighted Congestion Games , 2011, ICALP.

[19]  Martin Gairing,et al.  Total Latency in Singleton Congestion Games , 2007, WINE.

[20]  Yossi Azar,et al.  (Almost) optimal coordination mechanisms for unrelated machine scheduling , 2008, SODA '08.

[21]  Ioannis Caragiannis,et al.  Taxes for Linear Atomic Congestion Games , 2006, ESA.

[22]  Tim Roughgarden,et al.  Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness , 2010, ESA.

[23]  Éva Tardos,et al.  Composable and efficient mechanisms , 2012, STOC '13.

[24]  Robert W. Rosenthal,et al.  The network equilibrium problem in integers , 1973, Networks.

[25]  Adam Wierman,et al.  Distributed Welfare Games , 2013, Oper. Res..

[26]  Lloyd S. Shapley,et al.  Additive and non-additive set functions , 1953 .

[27]  Scott Shenker,et al.  Making greed work in networks: a game-theoretic analysis of switch service disciplines , 1995, TNET.

[28]  Tim Roughgarden,et al.  Intrinsic Robustness of the Price of Anarchy , 2015, J. ACM.

[29]  Fan Chung Graham,et al.  Internet and Network Economics, Third International Workshop, WINE 2007, San Diego, CA, USA, December 12-14, 2007, Proceedings , 2007, WINE.

[30]  Martin Gairing,et al.  Exact Price of Anarchy for Polynomial Congestion Games , 2006, STACS.

[31]  Camil Demetrescu,et al.  Algorithms – ESA 2011 , 2011, Lecture Notes in Computer Science.

[32]  Kurt Mehlhorn,et al.  Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms , 2011, Algorithmica.

[33]  Tobias Harks,et al.  Optimal Cost Sharing for Resource Selection Games , 2013, Math. Oper. Res..

[34]  Adam Wierman,et al.  Potential games are necessary to ensure pure nash equilibria in cost sharing games , 2013, EC.

[35]  L. Shapley,et al.  Potential Games , 1994 .

[36]  Yossi Azar,et al.  The Price of Routing Unsplittable Flow , 2005, STOC '05.

[37]  George Karakostas,et al.  On the Existence of Optimal Taxes for Network Congestion Games with Heterogeneous Users , 2010, SAGT.

[38]  Tim Roughgarden,et al.  The price of stability for network design with fair cost allocation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[39]  Tim Roughgarden,et al.  Simultaneous Single-Item Auctions , 2012, WINE.

[40]  Rolf H. Möhring,et al.  Characterizing the Existence of Potential Functions in Weighted Congestion Games , 2009, SAGT.

[41]  Ioannis Caragiannis,et al.  Improving the Efficiency of Load Balancing Games through Taxes , 2008, WINE.

[42]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[43]  Elias Koutsoupias,et al.  Coordination mechanisms , 2009, Theor. Comput. Sci..

[44]  L. Shapley,et al.  REGULAR ARTICLEPotential Games , 1996 .

[45]  Tim Roughgarden,et al.  Designing Network Protocols for Good Equilibria , 2010, SIAM J. Comput..

[46]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .