Variety and generality of clustering in globally coupled oscillators

[1]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[2]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[3]  Y. Aizawa Synergetic Approach to the Phenomena of Mode-Locking in Nonlinear Systems , 1976 .

[4]  A. Winfree The geometry of biological time , 1991 .

[5]  Y. Yamaguchi,et al.  Self-synchronization of nonlinear oscillations in the presence of fluctuations , 1981 .

[6]  I. Schreiber,et al.  Strange attractors in coupled reaction-diffusion cells , 1982 .

[7]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[8]  Yoshiki Kuramoto,et al.  Cooperative Dynamics of Oscillator Community : A Study Based on Lattice of Rings , 1984 .

[9]  G. Bard Ermentrout,et al.  Synchronization in a pool of mutually coupled oscillators with random frequencies , 1985 .

[10]  Shigeru Shinomoto,et al.  Cooperative Phenomena in Two-Dimensional Active Rotator Systems , 1986 .

[11]  H. Daido,et al.  Population Dynamics of Randomly Interacting Self-Oscillators. I Tractable Models without Frustration , 1987 .

[12]  Y. Kuramoto,et al.  Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities , 1987 .

[13]  Hadley,et al.  Phase locking of Josephson-junction series arrays. , 1988, Physical review. B, Condensed matter.

[14]  Daido,et al.  Lower critical dimension for populations of oscillators with randomly distributed frequencies: A renormalization-group analysis. , 1988, Physical review letters.

[15]  Shigeru Shinomoto,et al.  Phase Transitions and Their Bifurcation Analysis in a Large Population of Active Rotators with Mean-Field Coupling , 1988 .

[16]  Steven H. Strogatz,et al.  Phase-locking and critical phenomena in lattices of coupled nonlinear oscillators with random intrinsic frequencies , 1988 .

[17]  Shigeru Shinomoto,et al.  Mutual Entrainment in Oscillator Lattices with Nonvariational Type Interaction , 1988 .

[18]  Steven H. Strogatz,et al.  Collective dynamics of coupled oscillators with random pinning , 1989 .

[19]  K. Satoh Computer Experiment on the Cooperative Behavior of a Network of Interacting Nonlinear Oscillators , 1989 .

[20]  M. Shiino,et al.  Synchronization of infinitely many coupled limit-cycle type oscillators , 1989 .

[21]  Hadley,et al.  Attractor crowding in oscillator arrays. , 1989, Physical review letters.

[22]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[23]  H. Daido,et al.  Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators , 1990 .

[24]  K. Kaneko Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements , 1990 .

[25]  Kurt Wiesenfeld,et al.  Attractor crowding in Josephson junction arrays , 1990 .

[26]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[27]  Roy,et al.  Observation of antiphase states in a multimode laser. , 1990, Physical review letters.

[28]  G. Ermentrout Oscillator death in populations of “all to all” coupled nonlinear oscillators , 1990 .

[29]  Wiesenfeld,et al.  Clustering behavior of oscillator arrays. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[30]  Koch,et al.  Oscillator-phase coupling for different two-dimensional network connectivities. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  Otsuka Winner-takes-all dynamics and antiphase states in modulated multimode lasers. , 1991, Physical review letters.

[32]  N. Oyama,et al.  Use of a saline oscillator as a simple nonlinear dynamical system: Rhythms, bifurcation, and entrainment , 1991 .

[33]  Martin Golubitsky,et al.  Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry , 1991 .

[34]  S. Strogatz,et al.  Dynamics of a globally coupled oscillator array , 1991 .

[35]  Kunihiko Kaneko,et al.  Globally coupled circle maps , 1991 .

[36]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[37]  M. Golubitsky,et al.  Ponies on a merry-go-round in large arrays of Josephson junctions , 1991 .

[38]  S. Strogatz,et al.  Dynamics of a large system of coupled nonlinear oscillators , 1991 .

[39]  Y. Kuramoto Collective synchronization of pulse-coupled oscillators and excitable units , 1991 .

[40]  Kurt Wiesenfeld,et al.  Averaging of globally coupled oscillators , 1992 .

[41]  Toshio Aoyagi,et al.  Neural network model carrying phase information with application to collective dynamics , 1992 .

[42]  Schwartz,et al.  Interhyperhedral diffusion in Josephson-junction arrays. , 1992, Physical review letters.

[43]  Hansel,et al.  Clustering in globally coupled phase oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.