Methods and Guidelines for Effective Model Calibration

.............................................................................................................................................................

[1]  Richard L. Cooley,et al.  Uniqueness of a model of steady-state groundwater flow , 1976 .

[2]  S. Shapiro,et al.  An Approximate Analysis of Variance Test for Normality , 1972 .

[3]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[4]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .

[5]  William W.-G. Yeh,et al.  Aquifer parameter identification with optimum dimension in parameterization , 1981 .

[6]  Steen Christensen,et al.  Prediction of Regional Ground Water Flow to Streams , 1998 .

[7]  S. P. Neuman,et al.  Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels , 1984 .

[8]  S. P. Neuman,et al.  Statistical Characterization of Aquifer Heterogeneities: An Overview , 1982 .

[9]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[10]  E. Poeter,et al.  Field example of data fusion in site characterization , 1995 .

[11]  M. Hill A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression , 1992 .

[12]  M. C. Hill,et al.  Five computer programs for testing weighted residuals and calculating linear confidence and prediction intervals on results from the ground-water parameter-estimation computer program MODFLOWP , 1994 .

[13]  Mary C. Hill,et al.  Two-dimensional advective transport in ground-water flow parameter estimation , 1996 .

[14]  Brian J. Wagner,et al.  Sampling Design Methods For Groundwater Modeling Under Uncertainty , 1995 .

[15]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[16]  R. Lyman Ott.,et al.  An introduction to statistical methods and data analysis , 1977 .

[17]  E. Poeter,et al.  Documentation of UCODE; a computer code for universal inverse modeling , 1998 .

[18]  R. Parker Geophysical Inverse Theory , 1994 .

[19]  M. Eppstein,et al.  SIMULTANEOUS ESTIMATION OF TRANSMISSIVITY VALUES AND ZONATION , 1996 .

[20]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[21]  Yanyong Xiang,et al.  A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation , 1993 .

[22]  S. P. Neuman,et al.  Effects of kriging and inverse modeling on conditional simulation of the Avra Valley Aquifer in southern Arizona , 1982 .

[23]  Mary C. Hill,et al.  ADVECTIVE-TRANSPORT OBSERVATION (ADV) PACKAGE, A computer program for adding advective-transport observations of steady-state flow fields to the three-dimensional ground-water flow parameter-estimation model MODFLOWP , 1997 .

[24]  Robert B. Schnabel,et al.  Computational experience with confidence intervals for nonlinear least squares , 1986 .

[25]  M. C. Hill,et al.  Unrealistic parameter estimates in inverse modelling: A problem or a benefit for model calibration? , 1996 .

[26]  Steven M. Gorelick,et al.  Coupled process parameter estimation and prediction uncertainty using hydraulic head and concentration data , 1991 .

[27]  G. Forsythe,et al.  On best conditioned matrices , 1955 .

[28]  C. Tiedeman,et al.  Analysis of uncertainty in optimal groundwater contaminant capture design , 1993 .

[29]  Brian J. Wagner,et al.  Evaluating the Reliability of the Stream Tracer Approach to Characterize Stream‐Subsurface Water Exchange , 1996 .

[30]  A. Mantoglou,et al.  The Turning Bands Method for simulation of random fields using line generation by a spectral method , 1982 .

[31]  Richard L. Cooley,et al.  Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 2. Applications , 1983 .

[32]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state Groundwater flow: 2. Application of statistical analysis , 1979 .

[33]  Peter K. Kitanidis,et al.  How Observations and Structure Affect the Geostatistical Solution to the Steady‐State Inverse Problem , 1998 .

[34]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[35]  Arlen W. Harbaugh,et al.  MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs , 2000 .

[36]  L. K. Kuiper,et al.  Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States , 1994 .

[37]  H. Theil On the Use of Incomplete Prior Information in Regression Analysis , 1963 .

[38]  R. Parker,et al.  Occam's inversion; a practical algorithm for generating smooth models from electromagnetic sounding data , 1987 .

[39]  I. Gibson Statistics and Data Analysis in Geology , 1976, Mineralogical Magazine.

[40]  Richard L. Cooley,et al.  Regression modeling of ground-water flow , 1990 .

[41]  Steen Christensen,et al.  Simultaneous confidence intervals for a steady-state leaky aquifer groundwater flow model , 1996 .

[42]  Richard L. Cooley,et al.  A method of estimating parameters and assessing reliability for models of steady state groundwater flow: 1. Theory and numerical properties , 1977 .

[43]  Richard L. Cooley,et al.  Confidence Intervals for Ground‐Water Models Using Linearization, Likelihood, and Bootstrap Methods , 1997 .

[44]  Richard L. Cooley Regression modeling of ground-water flow; Supplement 1 : modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems , 1993 .

[45]  Richard L. Cooley,et al.  Nonlinear‐regression groundwater flow modeling of a deep regional aquifer system , 1986 .

[46]  R. L. Cooley Some new procedures for numerical solution of variably saturated flow problems , 1983 .

[47]  Heidi Christiansen Barlebo,et al.  Three-dimensional inverse modelling using heads and concentrations at a Danish landfill , 1995 .

[48]  Mary C. Hill,et al.  Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems , 1999 .

[49]  J. C. Ramírez,et al.  Estimation of aquifer parameters under transient and steady-state conditions , 1984 .

[50]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[51]  Carter,et al.  Accuracy of current meter measurements , 2022 .

[52]  Arnold Verruijt,et al.  Flow and transport in porous media , 1981 .

[53]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[54]  David W. Pollock,et al.  A Controlled Experiment in Ground Water Flow Model Calibration , 1998 .

[55]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[56]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[57]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[58]  Richard L. Cooley,et al.  Incorporation of prior information on parameters into nonlinear regression groundwater flow models: 1. Theory , 1982 .

[59]  T. N. Olsthoorn,et al.  Effective Parameter Optimization for Ground-Water Model Calibration , 1995 .

[60]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[61]  M. C. Hill,et al.  Comparison of three newton-like nonlinear least-squares methods for estimating parameters of ground-water flow models , 1992 .

[62]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[63]  Steen Christensen,et al.  On the Strategy of Estimating Regional‐Scale Transmissivity Fields , 1997 .

[64]  Richard L. Cooley,et al.  Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model , 1987 .

[65]  Mary C. Hill,et al.  Hydrogeologic Evaluation and Numerical Simulation of the Death Valley Regional Ground-Water Flow System, Nevada and California , 1998 .

[66]  Clifford I. Voss,et al.  Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media , 1988 .

[67]  A. Bellin,et al.  The concept of block-effective macrodispersivity and a unified approach for grid-scale- and plume-scale-dependent transport , 1999, Journal of Fluid Mechanics.