Two Influential Primate Classifications Logically Aligned

Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2–317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3–483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments—in the sense of the same name identifying congruent taxonomic meanings. The RCC-5 alignment approach is potentially widely applicable in systematics and can achieve scalable, precise resolution of semantically evolving name usages in synthetic, next-generation biodiversity, and phylogeny data platforms.

[1]  R. Macphee Auditory regions of primates and eutherian insectivores : morphology, ontogeny, and character analysis , 1981 .

[2]  Bertram Ludäscher,et al.  ProvenanceMatrix: A Visualization Tool for Multi-taxonomy Alignments , 2015, VOILA@ISWC.

[3]  Zhenyuan Lu,et al.  The taxonomic name resolution service: an online tool for automated standardization of plant names , 2013, BMC Bioinformatics.

[4]  C. Groves Primate taxonomy , 2018, The International Encyclopedia of Biological Anthropology.

[5]  L. V. Valen,et al.  Primates and their relatives in phylogenetic perspective , 1995, International Journal of Primatology.

[6]  R. Mittermeier,et al.  The Diversity of the New World Primates (Platyrrhini): An Annotated Taxonomy , 2009 .

[7]  Corinna Gries,et al.  Symbiota – A virtual platform for creating voucher-based biodiversity information communities , 2014, Biodiversity data journal.

[8]  G. R. Seamons,et al.  Mammal Species of the World: A Taxonomic and Geographic Reference (3rd edition) , 2006 .

[9]  R. Peet,et al.  Perspectives: Towards a language for mapping relationships among taxonomic concepts , 2009 .

[10]  C. Groves,et al.  Why one century of phenetics is enough: response to "Are there really twice as many bovid species as we thought?". , 2014, Systematic biology.

[11]  Ian P. Gent The Recomputation Manifesto , 2013, ArXiv.

[12]  J. Wible,et al.  Ontogeny of the Tympanic Floor and Roof in Archontans , 1993 .

[13]  James Cheney,et al.  Provenance in Databases: Why, How, and Where , 2009, Found. Trends Databases.

[14]  Malcolm J Scoble,et al.  Unitary or unified taxonomy? , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  Nico M. Franz,et al.  Anatomy of a cladistic analysis , 2014 .

[16]  Hilmar Lapp,et al.  NeXML: Rich, Extensible, and Verifiable Representation of Comparative Data and Metadata , 2012, Systematic biology.

[17]  John R. Gregg,et al.  The language of taxonomy: an application of symbolic logic to the study of classificatory systems , 1954 .

[18]  Anthony G. Cohn,et al.  A Spatial Logic based on Regions and Connection , 1992, KR.

[19]  Olivier Rieppel,et al.  The performance of morphological characters in broad‐scale phylogenetic analyses , 2007 .

[20]  M. Pigliucci Landscapes, Surfaces, and Morphospaces: What Are They Good For? , 2012 .

[21]  Paula M. Mabee,et al.  Toward Synthesizing Our Knowledge of Morphology: Using Ontologies and Machine Reasoning to Extract Presence/Absence Evolutionary Phenotypes across Studies , 2015, Systematic biology.

[22]  Karen Cranston,et al.  Phylesystem: a git-based data store for community-curated phylogenetic estimates , 2015, bioRxiv.

[23]  Kristofer M. Helgen,et al.  Global trends and biases in new mammal species discoveries. , 2007 .

[24]  C. Groves Species Concept in Primates , 2012, American journal of primatology.

[25]  Nico M. Franz,et al.  On the lack of good scientific reasons for the growing phylogeny/classification gap , 2005 .

[26]  C. Groves Why taxonomic stability is a bad idea, or why are there so few species of primates (or are there?) , 2001 .

[27]  John Wieczorek,et al.  Darwin Core: An Evolving Community-Developed Biodiversity Data Standard , 2012, PloS one.

[28]  Bertram Ludäscher,et al.  Reasoning over Taxonomic Change: Exploring Alignments for the Perelleschus Use Case , 2014, PloS one.

[29]  J. Honacki,et al.  Mammal species of the world : a taxonomic and geographic reference , 1982 .

[30]  Jonathan D. Ballou,et al.  Implications of different species concepts for conserving biodiversity , 2012 .

[31]  Walter G. Berendsohn,et al.  An integrative and dynamic approach for monographing species-rich plant groups - Building the global synthesis of the angiosperm order Caryophyllales , 2015 .

[32]  David M. Shotton,et al.  Linked data and provenance in biological data webs , 2009, Briefings Bioinform..

[33]  Walter G. Berendsohn,et al.  The concept of "potential taxa" in databases , 1995 .

[34]  Nico M. Franz,et al.  Phylogenetic revision of Minyomerus Horn, 1876 sec. Jansen & Franz, 2015 (Coleoptera, Curculionidae) using taxonomic concept annotations and alignments , 2015, ZooKeys.

[35]  David Remsen,et al.  The use and limits of scientific names in biological informatics , 2016, ZooKeys.

[36]  Andrew S. Burrell,et al.  Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. , 2014, Molecular phylogenetics and evolution.

[37]  L. Kruckenhauser,et al.  Species inflation and taxonomic artefacts—A critical comment on recent trends in mammalian classification , 2013 .

[38]  Nico M. Franz,et al.  BIOLOGICAL TAXONOMY AND ONTOLOGY DEVELOPMENT: SCOPE AND LIMITATIONS , 2010 .

[39]  C. Groves The Genus Cheirogaleus: Unrecognized Biodiversity in Dwarf Lemurs , 2000, International Journal of Primatology.

[40]  Michel C. A. Klein,et al.  Concept drift and how to identify it , 2011, J. Web Semant..

[41]  Ellinor Michel,et al.  Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond , 2016, ZooKeys.

[42]  A. Townsend Peterson,et al.  VertNet: A New Model for Biodiversity Data Sharing , 2010, PLoS biology.

[43]  Axel Polleres,et al.  Robust and scalable Linked Data reasoning incorporating provenance and trust annotations , 2011, J. Web Semant..

[44]  Nico M. Franz,et al.  5 On the Use of Taxonomic Concepts in Support of Biodiversity Research and Taxonomy , 2006 .

[45]  Hong Cui CharaParser for fine-grained semantic annotation of organism morphological descriptions , 2012, J. Assoc. Inf. Sci. Technol..

[46]  Daryl E. Wilson,et al.  Mammal Species of the World: A Taxonomic and Geographic Reference , 1993 .

[47]  M. Watson,et al.  The Prometheus Taxonomic Model: a practical approach to representing multiple classifications. , 2000 .

[48]  J. Edwards Research and Societal Benefits of the Global Biodiversity Information Facility , 2004 .

[49]  Nico M. Franz,et al.  Description of two new species and phylogenetic reassessment of Perelleschus O’Brien & Wibmer, 1986 (Coleoptera: Curculionidae), with a complete taxonomic concept history of Perelleschus sec. Franz & Cardona-Duque, 2013 , 2013 .

[50]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[51]  Trevor Paterson,et al.  Scientific Names Are Ambiguous as Identifiers for Biological Taxa: Their Context and Definition Are Required for Accurate Data Integration , 2005, DILS.

[52]  R. Baker,et al.  SPECIATION IN MAMMALS AND THE GENETIC SPECIES CONCEPT , 2006, Journal of mammalogy.

[53]  Gaurav Vaidya,et al.  Avibase – a database system for managing and organizing taxonomic concepts , 2014, ZooKeys.

[54]  D J Patterson,et al.  Names are key to the big new biology. , 2010, Trends in ecology & evolution.

[55]  R. Mittermeier,et al.  Primate taxonomy: Species and conservation , 2014, Evolutionary anthropology.

[56]  Miroslaw Truszczynski,et al.  Answer set programming at a glance , 2011, Commun. ACM.

[57]  R. Baker,et al.  Squirrels: the animal answer guide , 2007 .

[58]  Q. Wheeler The New Taxonomy , 2008 .

[59]  Bertram Ludäscher,et al.  Reasoning about taxonomies in first-order logic , 2007, Ecol. Informatics.

[60]  Hilmar Lapp,et al.  The vertebrate taxonomy ontology: a framework for reasoning across model organism and species phenotypes , 2013, J. Biomed. Semant..

[61]  C. Groves The nature of species: A rejoinder to Zachos et al. , 2013 .

[62]  E. Lorenzen,et al.  Are There Really Twice as Many Bovid Species as We Thought? Issues regarding the Criteria Used to Define New Species , 2022 .

[63]  Bertram Ludäscher,et al.  Provenance for Explaining Taxonomy Alignments , 2014, IPAW.

[64]  Steven J. Baskauf,et al.  Darwin-SW: Darwin Core-based terms for expressing biodiversity data as RDF , 2016, Semantic Web.

[65]  Bertram Ludäscher,et al.  A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning , 2014, RuleML.

[66]  I. Tattersall The primates of Madagascar , 1982 .

[67]  Tony Rees,et al.  Taxamatch, an Algorithm for Near (‘Fuzzy’) Matching of Scientific Names in Taxonomic Databases , 2014, PloS one.

[68]  Jörg U. Ganzhorn,et al.  Taxonomic Revision of Mouse Lemurs (Microcebus) in the Western Portions of Madagascar , 2000, International Journal of Primatology.

[69]  Sabina Leonelli,et al.  Classificatory Theory in Biology , 2013 .

[70]  P. Garber South American primates : comparative perspectives in the study of behavior, ecology, and conservation , 2009 .

[71]  Bertram Ludäscher,et al.  Euler/X: A Toolkit for Logic-based Taxonomy Integration , 2013, WFLP 2013.

[72]  L. Marsh A Taxonomic Revision of the Saki Monkeys, Pithecia Desmarest, 1804 , 2014 .

[73]  Bertram Ludäscher,et al.  Names are not good enough: Reasoning over taxonomic change in the Andropogon complex , 2016, Semantic Web.

[74]  C. Groves,et al.  Primate phylogeny: morphological vs. molecular results. , 1996, Molecular phylogenetics and evolution.

[75]  C. Groves,et al.  "Taxonomic inflation" in the historical context of mammalogy and conservation , 2013 .

[76]  Bertram Ludäscher,et al.  Merging Sets of Taxonomically Organized Data Using Concept Mappings under Uncertainty , 2009, OTM Conferences.

[77]  H. Bryant,et al.  A review of criticisms of phylogenetic nomenclature: is taxonomic freedom the fundamental issue? , 2002, Biological reviews of the Cambridge Philosophical Society.

[78]  M. Cartmill,et al.  The order primates. , 1980, Science.

[79]  K. Helgen,et al.  Nomenclature and placental mammal phylogeny , 2010, BMC Evolutionary Biology.

[80]  G. Thomas Evolution: An avian explosion , 2015, Nature.

[81]  R. Presley Auditory regions of primates and Eutherian insectivores , 1982, International Journal of Primatology.

[82]  J. G. Burleigh,et al.  Synthesis of phylogeny and taxonomy into a comprehensive tree of life , 2014, Proceedings of the National Academy of Sciences.

[83]  Alain Dubois,et al.  Proposed Rules for the incorporation of nomina of higher-ranked zoological taxa in the International Code of Zoological Nomenclature . 1. Some general questions, concepts and terms of biological nomenclature , 2005 .

[84]  Wolfgang Faber Answer Set Programming , 2013, Reasoning Web.

[85]  Torsten Dikow,et al.  Significance of Specimen Databases from Taxonomic Revisions for Estimating and Mapping the Global Species Diversity of Invertebrates and Repatriating Reliable Specimen Data , 2004 .

[86]  Eero Hyvönen,et al.  Making species checklists understandable to machines – a shift from relational databases to ontologies , 2014, J. Biomed. Semant..

[87]  F. Zachos,et al.  Taxonomic inflation and the poverty of the Phylogenetic Species Concept - A reply to Gippoliti and Groves , 2013 .

[88]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[89]  J. Witteveen,et al.  Naming and contingency: the type method of biological taxonomy , 2015 .