THE SPECTRAL APPROXIMATION OF LINEAR OPERATORS WITH APPLICATIONS TO THE COMPUTATION OF EIGENELEMENTS OF DIFFERENTIAL AND INTEGRAL OPERATORS

We are concerned with the numerical solution of the eigenvalue problem Tp =A<, < ? 0, where T is a linear operator in a Banach space. T may represent a bounded integral operator or a closed differential operator (with bounded inverse). The linear operator T and its approximation Tn are defined in the same space. Perturbation theory is then a suitable framework for our problem. We present in the first part a systematic study of the various notions of convergence Tn -- T, which imply the convergence of the eigenvalues with preservation of the multiplicities. The results are then applied to practical methods for integral and differential operators. In the second part, we present convergence rates. Analytic perturbation theory is used to refine on the computed eigenelements of an integral operator, and to produce localization results on the eigenelements. Finally superconvergence results are discussed, both for integral and differential operators.

[1]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[2]  G. Chandler Superconvergence of numerical solutions to second kind integral equations , 1980, Bulletin of the Australian Mathematical Society.

[3]  Jr. Wendell H. Mills,et al.  The Resolvent Stability Condition for Spectra Convergence with Application to the Finite Element Approximation of Noncompact Operators , 1979 .

[4]  B. Burn,et al.  Projection methods for equations of the second kind , 1979 .

[5]  Wolfgang Hackbusch,et al.  On the Computation of Approximate Eigenvalues and Eigenfunctions of Elliptic Operators by Means of a Multi-Grid Method , 1979 .

[6]  F. Chatelin Numerical Computation of the Eigenelements of Linear Integral Operators by Iterations , 1978 .

[7]  Mary F. Wheeler,et al.  A Quasi-Projection Analysis of Galerkin Methods for Parabolic and Hyperbolic Equations , 1978 .

[8]  I. Babuska,et al.  Numerical treatment of eigenvalue problems for differential equations with discontinuous coefficients. [''Factoring'' procedure] , 1977 .

[9]  Jacques Rappaz,et al.  Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma , 1977 .

[10]  M. Veldhuizen A refinement process for collocation approximations , 1976 .

[11]  S. Nakamura Analysis of the Coarse-Mesh Rebalancing Effect on Chebyshev Polynomial Iterations , 1976 .

[12]  Todd F. Dupont,et al.  A Unified Theory of Superconvergence for Galerkin Methods for Two-Point Boundary Problems , 1976 .

[13]  Ian H. Sloan,et al.  Error analysis for a class of degenerate-kernel methods , 1975 .

[14]  J. Osborn Spectral approximation for compact operators , 1975 .

[15]  Burton Wendroff,et al.  The Relation Between the Galerkin and Collocation Methods Using Smooth Splines , 1974 .

[16]  J. J. Douglas,et al.  Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .

[17]  Françoise Chatelin,et al.  Convergence of Approximation Methods to Compute Eigenelements of Linear Operations , 1973 .

[18]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[19]  By J. H. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[20]  Richard Weiss,et al.  Asymptotic Expansions for Product Integration , 1973 .

[21]  Steven Pruess,et al.  Estimating the Eigenvalues of Sturm–Liouville Problems by Approximating the Differential Equation , 1973 .

[22]  Heinz-Otto Kreiss,et al.  Difference approximations for boundary and eigenvalue problems for ordinary differential equations , 1972 .

[23]  Yasuhiko Ikebe,et al.  The Galerkin Method for the Numerical Solution of Fredholm Integral Equations of the Second Kind , 1972 .

[24]  M. A. Krasnoselʹskii,et al.  Approximate Solution of Operator Equations , 1972 .

[25]  James L. Phillips The Use of Collocation as a Projection Method for Solving Linear Operator Equations , 1972 .

[26]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[27]  C. Baker The Deferred Approach to the Limit for Eigenvalues of Integral Equations , 1971 .

[28]  J. Bramble,et al.  Rayleigh‐Ritz‐Galerkin methods for dirichlet's problem using subspaces without boundary conditions , 1970 .

[29]  J. Canosa,et al.  A New Method for the Solution of the Schrdinger Equation , 1970 .

[30]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .

[31]  P. Linz On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations , 1970 .

[32]  Philippe G. Ciarlet,et al.  Numerical methods of high-order accuracy for nonlinear boundary value problems , 1968 .

[33]  M. F. Kaspshitskaya,et al.  Convergence of collocation method , 1967 .

[34]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[35]  C. D. Boor,et al.  Rayleigh-Ritz Approximation by Piecewise Cubic Polynomials , 1966 .

[36]  P. Anselone,et al.  Uniformly convergent approximate solutions of Fredholm integral equations , 1965 .

[37]  Tosio Kato On the Upper and Lower Bounds of Eigenvalues , 1949 .

[38]  K. Atkinson THE NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR COMPACT INTEGRAL OPERATORS , 2008 .

[39]  Mitchell Luskin,et al.  Approximation of the spectrum of closed operators: the determination of normal modes of a rotating basin , 1981 .

[40]  E. Houstis,et al.  A collocation method for Fredholm integral equations of the second kind , 1978 .

[41]  J. Rappaz,et al.  Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods , 1978 .

[42]  William G. Kolata,et al.  Approximation in variationally posed eigenvalue problems , 1978 .

[43]  C. Canuto,et al.  Eigenvalue approximations by mixed methods , 1978 .

[44]  V. Pták Nondiscrete mathematical induction and iterative existence proofs , 1976 .

[45]  P. Anselone,et al.  Double Approximation Methods for the Solution of Fredholm Integral Equations , 1976 .

[46]  H. Weinberger Variational Methods for Eigenvalue Approximation , 1974 .

[47]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[48]  G. Temple The Computation of Characteristic Numbers and Characteristic Functions , 1929 .