Enhanced microwave absorption property of Fe3O4/CaCu3−xMgxTi4−ySnyO12(0≤ x, y ≤1)/graphene oxide nanocomposites in epoxy vinyl ester resin

[1]  Ziyang Dai,et al.  Facile one-pot synthesis of NiCo2O4 hollow spheres with controllable number of shells for high-performance supercapacitors , 2017, Nano Research.

[2]  B. Fan,et al.  Yolk-Shell Ni@SnO2 Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. , 2016, ACS applied materials & interfaces.

[3]  M. H. Rasoulifard,et al.  Microwave absorption properties of polyaniline-Fe 3 O 4 /ZnO-polyester nanocomposite: Preparation and optimization , 2016 .

[4]  B. Fan,et al.  Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties , 2016, Nano Research.

[5]  B. Fan,et al.  Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids. , 2015, Dalton transactions.

[6]  B. Fan,et al.  Facile Synthesis of Novel Heterostructure Based on SnO2 Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. , 2015, ACS applied materials & interfaces.

[7]  B. Fan,et al.  Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties , 2015 .

[8]  W. Cao,et al.  Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature , 2015 .

[9]  B. Fan,et al.  Investigation of the electromagnetic absorption properties of Ni@TiO2 and Ni@SiO2 composite microspheres with core-shell structure. , 2015, Physical chemistry chemical physics : PCCP.

[10]  Q. Ni,et al.  One-dimensional barium titanate coated multi-walled carbon nanotube heterostructures: synthesis and electromagnetic absorption properties , 2015 .

[11]  B. Fan,et al.  Fabrication and enhanced microwave absorption properties of Al2O3 nanoflake-coated Ni core–shell composite microspheres , 2014 .

[12]  Y. Liu,et al.  Synthesis of hierarchical sword-like cobalt particles and their microwave absorption properties , 2014 .

[13]  Jun Ma,et al.  Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. , 2014, ACS applied materials & interfaces.

[14]  N. Gupta,et al.  Mechanical and thermal properties of fly ash/vinyl ester syntactic foams , 2014 .

[15]  Yao Xu,et al.  Sub-30 nm Fe3O4 and γ-Fe2O3 octahedral particles: preparation and microwave absorption properties , 2013, Journal of Nanoparticle Research.

[16]  Xiaobo Liu,et al.  Preparation and microwave absorption properties of BaTiO3@MWCNTs core/shell heterostructure , 2013 .

[17]  Ying Huang,et al.  Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO–Fe3O4 composites , 2013 .

[18]  Chuangui Jin,et al.  Preparation and electromagnetic wave absorption properties of core–shell structured Fe3O4–polyaniline nanoparticles , 2013 .

[19]  Jun Cai,et al.  Smart absorbing property of composites with MWCNTs and carbonyl iron as the filler , 2013 .

[20]  A. Tiwari,et al.  Spectroscopic and morphological analysis of graphene vinylester nanocomposites , 2013 .

[21]  U. S. Rai,et al.  Dielectric properties of zinc doped nanocrystalline calcium copper titanate synthesized by different approach , 2013 .

[22]  Wei-Hao Liao,et al.  Effects of multiwalled carbon nanotubes functionalization on the morphology and mechanical and thermal properties of carbon fiber/vinyl ester composites. , 2013, ACS applied materials & interfaces.

[23]  W. Choi,et al.  Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution. , 2013, Nanoscale.

[24]  S. Or,et al.  Influence of a graphite shell on the thermal, magnetic and electromagnetic characteristics of Fe nanoparticles , 2013 .

[25]  D. Ratna,et al.  Synthesis of Vinylester-Clay Nanocomposites: Influence of the Nature ofClay on Mechanical, Thermal and Barrier Properties , 2012 .

[26]  M. S. S. Dorraji,et al.  Effects of dopant, coagulant, and reinforcing nanofiller on mechanical and electrical properties of wet-spun polyaniline nanocomposite fibers , 2012, Journal of Polymer Research.

[27]  G. Du,et al.  Fabrication of Fe/Fe3C-functionalized carbon nanotubes and their electromagnetic and microwave absorbing properties , 2012 .

[28]  Changyong Wang,et al.  A study of the magnetic and electromagnetic properties of γ-Fe2O3–multiwalled carbon nanotubes (MWCNT) and Fe/Fe3C–MWCNT composites , 2009 .

[29]  C. Ma,et al.  Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites , 2008 .

[30]  Milind D. Arbatti,et al.  Ceramic–Polymer Composites with High Dielectric Constant , 2007 .

[31]  T. C. Goel,et al.  Complex permittivity and microwave absorption properties of a composite dielectric absorber , 2006 .

[32]  F. Wei,et al.  Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites , 2006 .

[33]  Xiuyu Wang,et al.  Synthesis and characterization of magnetic nanometer pigment Fe3O4 , 2005 .

[34]  T. Fang,et al.  Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12 , 2005 .

[35]  Chang-Sun Hong,et al.  Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges , 2004 .

[36]  A. G. S. Filho,et al.  Structural properties of CaCu3Ti4O12 obtained by mechanical alloying , 2002 .

[37]  G. Palmese,et al.  Effects of temperature on cure kinetics and mechanical properties of vinyl-ester resins , 1999 .