Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium

[1]  A. Arkin,et al.  Evidence-Based Annotation of Transcripts and Proteins in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough , 2011, Journal of bacteriology.

[2]  J. Keasling,et al.  Engineering microbial biofuel tolerance and export using efflux pumps , 2011, Molecular systems biology.

[3]  Michael Y. Galperin,et al.  Diversity of structure and function of response regulator output domains. , 2010, Current opinion in microbiology.

[4]  Inna Dubchak,et al.  MicrobesOnline: an integrated portal for comparative and functional genomics , 2009, Nucleic Acids Res..

[5]  Ann M Stock,et al.  Biological insights from structures of two-component proteins. , 2009, Annual review of microbiology.

[6]  A. Camilli,et al.  PhoB Regulates Motility, Biofilms, and Cyclic di-GMP in Vibrio cholerae , 2009, Journal of bacteriology.

[7]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[8]  Amy K. Schmid,et al.  Prevalence of transcription promoters within archaeal operons and coding sequences , 2009, Molecular systems biology.

[9]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[10]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[11]  A. Filloux,et al.  Organization and PprB-Dependent Control of the Pseudomonas aeruginosa tad Locus, Involved in Flp Pilus Biology , 2009, Journal of bacteriology.

[12]  Matthew Berriman,et al.  Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database , 2008, Bioinform..

[13]  Byoung-Chan Kim,et al.  PilR, a Transcriptional Regulator for Pilin and Other Genes Required for Fe(III) Reduction in Geobacter sulfurreducens , 2008, Journal of Molecular Microbiology and Biotechnology.

[14]  M. Laub,et al.  Specificity in two-component signal transduction pathways. , 2007, Annual review of genetics.

[15]  M. Fields,et al.  Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments. , 2007, Environmental microbiology.

[16]  Adam P. Arkin,et al.  Response of Desulfovibrio vulgaris to Alkaline Stress , 2007, Journal of bacteriology.

[17]  Victor Olman,et al.  Computational prediction of Pho regulons in cyanobacteria , 2007, BMC Genomics.

[18]  S. Lee,et al.  Novel gene members in the Pho regulon of Escherichia coli. , 2006, FEMS microbiology letters.

[19]  Adam P. Arkin,et al.  The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation , 2006, PLoS Comput. Biol..

[20]  Naomi Ward,et al.  Exopolysaccharide-associated protein sorting in environmental organisms: the PEP-CTERM/EpsH system. Application of a novel phylogenetic profiling heuristic , 2006, BMC Biology.

[21]  I. Martins,et al.  Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[22]  Adam P. Arkin,et al.  Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis , 2006, Applied and Environmental Microbiology.

[23]  T. Finan,et al.  Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria , 2006, Nucleic acids research.

[24]  Katherine H. Huang,et al.  Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough , 2006, Journal of bacteriology.

[25]  F. Narberhaus,et al.  The C‐terminal end of LpxC is required for degradation by the FtsH protease , 2006, Molecular microbiology.

[26]  C. Gross,et al.  Conserved and Variable Functions of the σE Stress Response in Related Genomes , 2005, PLoS biology.

[27]  Adam P. Arkin,et al.  Salt Stress in Desulfovibrio vulgaris Hildenborough : an Integrated Genomics Approach , 2006 .

[28]  Katherine H. Huang,et al.  Temporal Transcriptomic Analysis as Desulfovibrio vulgaris Hildenborough Transitions into Stationary Phase during Electron Donor Depletion , 2005, Applied and Environmental Microbiology.

[29]  Peter D. Karp,et al.  The comprehensive updated regulatory network of Escherichia coli K-12 , 2006, BMC Bioinformatics.

[30]  Michael T Laub,et al.  Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis , 2005, PLoS biology.

[31]  N. D. Clarke,et al.  DIP-chip: rapid and accurate determination of DNA-binding specificity. , 2005, Genome research.

[32]  Katherine H. Huang,et al.  A novel method for accurate operon predictions in all sequenced prokaryotes , 2005, Nucleic acids research.

[33]  Gerrit Voordouw,et al.  Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite , 2004, Journal of bacteriology.

[34]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[35]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[36]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[37]  Kenta Nakai,et al.  BTBS: database of transcriptional regulation in Bacillus subtilis and its contribution to comparative genomics , 2004, Nucleic Acids Res..

[38]  J. Heidelberg,et al.  Gene Expression Analysis of Energy Metabolism Mutants of Desulfovibrio vulgaris Hildenborough Indicates an Important Role for Alcohol Dehydrogenase , 2003, Journal of bacteriology.

[39]  T. Mascher,et al.  The Streptococcus pneumoniae cia Regulon: CiaR Target Sites and Transcription Profile Analysis , 2003, Journal of bacteriology.

[40]  Takeshi Mizuno,et al.  Transcriptome analysis of all two‐component regulatory system mutants of Escherichia coli K‐12 , 2002, Molecular microbiology.

[41]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[42]  Naotake Ogasawara,et al.  Comprehensive DNA Microarray Analysis ofBacillus subtilis Two-Component Regulatory Systems , 2001, Journal of bacteriology.

[43]  M. Buck,et al.  Identification of potential sigma(N)-dependent promoters in bacterial genomes. , 2000, Microbiology.

[44]  M. Teixeira,et al.  Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. , 2000, Biochimica et biophysica acta.

[45]  Jeffrey M. Skerker,et al.  Identification and cell cycle control of a novel pilus system in Caulobacter crescentus , 2000, The EMBO journal.

[46]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[47]  D. Hwang,et al.  PhoB-dependent transcriptional activation of the iciA gene during starvation for phosphate in Escherichia coli , 1999, Molecular and General Genetics MGG.

[48]  Gary D. Stormo,et al.  Identifying DNA and protein patterns with statistically significant alignments of multiple sequences , 1999, Bioinform..

[49]  D. Kaiser,et al.  Regulation of expression of the pilA gene in Myxococcus xanthus , 1997, Journal of bacteriology.

[50]  J. Lutkenhaus,et al.  Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine Deacetylase in Escherichia coli , 1996, The Journal of Biological Chemistry.

[51]  A. Benson,et al.  Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD , 1995, Journal of bacteriology.

[52]  J. Stock,et al.  Acetyl phosphate and the activation of two-component response regulators. , 1994, The Journal of biological chemistry.

[53]  S. Lory,et al.  PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis‐acting sequence upstream of the pilin gene promoter , 1994, Molecular microbiology.

[54]  Charles Elkan,et al.  Fitting a Mixture Model By Expectation Maximization To Discover Motifs In Biopolymer , 1994, ISMB.