Localization of a mobile robot using relative bearing measurements

In this paper, the problem of recursive robot localization based on relative bearing measurements is considered, where unknown but bounded measurement uncertainties are assumed. A common approach is to approximate the resulting set of feasible states by simple-shaped bounding sets such as, e.g., axis-aligned boxes, and calculate the optimal parameters of this approximation based on the measurements and prior knowledge. In the novel approach presented here, a nonlinear transformation of the measurement equation into a higher dimensional space is performed. This yields a tight, possibly complex-shaped, bounding set in a closed-form representation whose parameters can be determined analytically for the measurement step. It is shown that the new bound is superior to commonly used outer bounds.

[1]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[2]  Fumihito Arai,et al.  Vision based navigation system by variable template matching for autonomous mobile robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[3]  Uwe D. Hanebeck,et al.  Nonlinear set-theoretic position estimation of cellular phones , 2003, 2003 European Control Conference (ECC).

[4]  Uwe D. Hanebeck,et al.  Localization of fast mobile robots based on an advanced angle-measurement technique , 1996 .

[5]  K. Passino,et al.  An optimal volume ellipsoid algorithm for parameter set estimation , 1993, IEEE Trans. Autom. Control..

[6]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Bruno Marhic,et al.  Geometrical matching for mobile robot localization , 2000, IEEE Trans. Robotics Autom..

[8]  Hugh F. Durrant-Whyte,et al.  A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[9]  Dieter Fox,et al.  Markov localization - a probabilistic framework for mobile robot localization and navigation , 1998 .

[10]  U. Hanebeck Recursive nonlinear set-theoretic estimation based on pseudo ellipsoids , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[11]  Eric Walter,et al.  Initial localization by set inversion , 2002, IEEE Trans. Robotics Autom..

[12]  Luc Jaulin,et al.  Interval constraint propagation with application to bounded-error estimation , 2000, Autom..

[13]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Dominique Meizel,et al.  Set inversion for x -algorithms, with applications to guaranteed robot localization , 2000 .

[15]  Andrea Garulli,et al.  Set membership localization of mobile robots via angle measurements , 2001, IEEE Trans. Robotics Autom..

[16]  Witold Pedrycz,et al.  Bounding approaches to system identification , 1997 .

[17]  Patric Jensfelt,et al.  Active global localization for a mobile robot using multiple hypothesis tracking , 2001, IEEE Trans. Robotics Autom..

[18]  Uwe D. Hanebeck,et al.  Self-localization of a mobile robot using fast normalized cross correlation , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[19]  D. Meizel,et al.  Estimation of Mobile Robot Localization: Geometric Approaches , 1996 .

[20]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[21]  Giovanni Ulivi,et al.  An outdoor navigation system using GPS and inertial platform , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[22]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[23]  Jeffrey K. Uhlmann,et al.  Nondivergent simultaneous map building and localization using covariance intersection , 1997, Defense, Security, and Sensing.

[24]  Uwe D. Hanebeck,et al.  Optimal filtering for polynomial measurement nonlinearities with additive non-Gaussian noise , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[25]  José A. Castellanos,et al.  Simultaneous map building and localization for mobile robots: a multisensor fusion approach , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[26]  Uwe D. Hanebeck,et al.  New results for stochastic prediction and filtering with unknown correlations , 2001, Conference Documentation International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI 2001 (Cat. No.01TH8590).

[27]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[28]  Yasushi Yagi,et al.  Map-based navigation for a mobile robot with omnidirectional image sensor COPIS , 1995, IEEE Trans. Robotics Autom..