Measurability of optimal transportation and strong coupling of martingale measures
暂无分享,去创建一个
[1] Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach , 2002 .
[2] Hiroshi Tanaka. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules , 1978 .
[3] Ludger Riischendorf. The Wasserstein distance and approximation theorems , 1985 .
[4] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[5] C. Villani. Optimal Transport: Old and New , 2008 .
[6] Walter Schachermayer,et al. Characterization of optimal transport plans for the Monge-Kantorovich problem , 2007, 0711.1268.
[7] N. El Karoui,et al. Martingale measures and stochastic calculus , 1990 .
[8] S. Méléard,et al. Measurability of optimal transportation and convergence rate for Landau type interacting particle systems , 2007, math/0703432.
[9] S. Rachev,et al. Mass transportation problems , 1998 .
[10] S. Méléard,et al. Discontinuous Measure-Valued Branching Processes and Generalized Stochastic Equations , 1991 .
[11] C. Villani. Topics in Optimal Transportation , 2003 .
[12] J. Lepeltier,et al. Représentation des processus ponctuels multivariés à l'aide d'un processus de Poisson , 1977 .
[13] J. B. Walsh,et al. An introduction to stochastic partial differential equations , 1986 .