On the existence of a class of invertible FIR filters for spectral shaping
暂无分享,去创建一个
[1] G. Wilson. Factorization of the Covariance Generating Function of a Pure Moving Average Process , 1969 .
[2] Chong-Yung Chi,et al. An Improved Inverse Filtering Method for Parametric Spectral Estimation , 1991, 1991 American Control Conference.
[3] Issa M. S. Panahi,et al. A new class of invertible FIR filters for spectral shaping , 2009, Signal Process..
[4] J. Durbin. EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .
[5] Petre Stoica,et al. Spectral Analysis of Signals , 2009 .
[6] Petre Stoica,et al. MA estimation in polynomial time , 2000, IEEE Trans. Signal Process..
[7] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[8] M. Lagunas-Hernandez,et al. ARMA model maximum entropy power spectral estimation , 1984 .
[9] Moeness G. Amin,et al. Computationally lag-invariant recursive spectrum estimators , 1987, IEEE Trans. Acoust. Speech Signal Process..
[10] Issa M. S. Panahi,et al. Blind identification of multi-channel systems with single input and unknown orders , 2009, Signal Process..
[11] Piet M. T. Broersen,et al. Generating data with prescribed power spectral density , 2003, IEEE Trans. Instrum. Meas..
[12] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[13] Steven Kay,et al. Modern Spectral Estimation: Theory and Application , 1988 .
[14] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[15] Anders Lindquist,et al. Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..
[16] Petre Stoica,et al. On the parameterization of positive real sequences and MA parameter estimation , 2001, IEEE Trans. Signal Process..
[17] J. P. Burg,et al. Maximum entropy spectral analysis. , 1967 .
[18] Petre Stoica,et al. New spectral estimation based on filterbank for spectrum sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[19] Abdelhak M. Zoubir,et al. The recursive maximum likelihood algorithm for non-stationary signals , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[20] R. Roberts,et al. The use of second-order information in the approximation of discreate-time linear systems , 1976 .
[21] Petre Stoica,et al. Statistical analysis of the least squares autoregressive estimator in the presence of noise , 1987, IEEE Trans. Acoust. Speech Signal Process..
[22] Aydin Kizilkaya,et al. ARMA model parameter estimation based on the equivalent MA approach , 2006, Digit. Signal Process..
[23] Monson H. Hayes,et al. Statistical Digital Signal Processing and Modeling , 1996 .
[24] Petre Stoica,et al. ARMA parameter estimation: Revisiting a cepstrum-based method , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[25] Moeness G. Amin,et al. Lag-invariant adaptive spectrum estimation , 1984, ICASSP.
[26] Miguel Angel Lagunas,et al. Blind wideband source separation , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.
[27] I. Panahi,et al. A Class of Quadratic FIR Filters with Applications to Spectral Shaping and Narrow Band Generation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.
[28] P.M. Djuric,et al. An approximate maximum likelihood ARMA estimator based on the power cepstrum , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[29] J. Cadzow,et al. High performance spectral estimation--A new ARMA method , 1980 .