On the existence of a class of invertible FIR filters for spectral shaping

This paper presents a proof for the existence of a class of LTI causal IFIRF converting spectrum of an arbitrary stationary input process to an output with prescribed set of normalized autocorrelation samples. The input is an MA, AR, or ARMA process of finite order, with or without additive white noise, whose stable model may or may not be minimum phase. The prescribed values of finite number of output autocorrelation lags (except lag zero) may or may not all be equal to zero. The FIR filter is minimum phase and of finite order. It is derived from the predefined input and output autocorrelation samples directly using no intermediate filtering stage or minimization of a cost function. The filters' output autocorrelation lags match the prescribed values precisely. Such a filter provides an alternative solution to the problem of finding a causal IFIRF for spectral shaping in statistical signal processing applications.

[1]  G. Wilson Factorization of the Covariance Generating Function of a Pure Moving Average Process , 1969 .

[2]  Chong-Yung Chi,et al.  An Improved Inverse Filtering Method for Parametric Spectral Estimation , 1991, 1991 American Control Conference.

[3]  Issa M. S. Panahi,et al.  A new class of invertible FIR filters for spectral shaping , 2009, Signal Process..

[4]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[5]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[6]  Petre Stoica,et al.  MA estimation in polynomial time , 2000, IEEE Trans. Signal Process..

[7]  L. Mcbride,et al.  A technique for the identification of linear systems , 1965 .

[8]  M. Lagunas-Hernandez,et al.  ARMA model maximum entropy power spectral estimation , 1984 .

[9]  Moeness G. Amin,et al.  Computationally lag-invariant recursive spectrum estimators , 1987, IEEE Trans. Acoust. Speech Signal Process..

[10]  Issa M. S. Panahi,et al.  Blind identification of multi-channel systems with single input and unknown orders , 2009, Signal Process..

[11]  Piet M. T. Broersen,et al.  Generating data with prescribed power spectral density , 2003, IEEE Trans. Instrum. Meas..

[12]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[13]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Anders Lindquist,et al.  Cepstral coefficients, covariance lags, and pole-zero models for finite data strings , 2001, IEEE Trans. Signal Process..

[16]  Petre Stoica,et al.  On the parameterization of positive real sequences and MA parameter estimation , 2001, IEEE Trans. Signal Process..

[17]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[18]  Petre Stoica,et al.  New spectral estimation based on filterbank for spectrum sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[19]  Abdelhak M. Zoubir,et al.  The recursive maximum likelihood algorithm for non-stationary signals , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[20]  R. Roberts,et al.  The use of second-order information in the approximation of discreate-time linear systems , 1976 .

[21]  Petre Stoica,et al.  Statistical analysis of the least squares autoregressive estimator in the presence of noise , 1987, IEEE Trans. Acoust. Speech Signal Process..

[22]  Aydin Kizilkaya,et al.  ARMA model parameter estimation based on the equivalent MA approach , 2006, Digit. Signal Process..

[23]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[24]  Petre Stoica,et al.  ARMA parameter estimation: Revisiting a cepstrum-based method , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[25]  Moeness G. Amin,et al.  Lag-invariant adaptive spectrum estimation , 1984, ICASSP.

[26]  Miguel Angel Lagunas,et al.  Blind wideband source separation , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[27]  I. Panahi,et al.  A Class of Quadratic FIR Filters with Applications to Spectral Shaping and Narrow Band Generation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[28]  P.M. Djuric,et al.  An approximate maximum likelihood ARMA estimator based on the power cepstrum , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[29]  J. Cadzow,et al.  High performance spectral estimation--A new ARMA method , 1980 .