Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection

[1]  Hiroki Tanaka,et al.  Lipid nanoparticles for mRNA delivery , 2022, Drug Delivery System.

[2]  J. Manautou,et al.  Absorption, Distribution, Metabolism, and Excretion of FDA‐approved Antisense Oligonucleotide Drugs , 2022, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  D. Eisenberg,et al.  Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43 , 2022, Nature.

[4]  Greg L. Hura,et al.  Predictive high-throughput screening of PEGylated lipids in oligonucleotide-loaded lipid nanoparticles for neuronal gene silencing , 2022, Nanoscale advances.

[5]  A. Murzin,et al.  Age-Dependent Formation of TMEM106B Amyloid Filaments in Human Brain , 2021, bioRxiv.

[6]  C. Wong,et al.  Screening of Chemically Distinct Lipid Nanoparticles In Vivo Using DNA Barcoding Technology Towards Effectively Delivering Messenger RNA to Hematopoietic Stem and Progenitor Cells , 2021, Blood.

[7]  G. Barton,et al.  Regulation of the nucleic acid-sensing Toll-like receptors , 2021, Nature reviews. Immunology.

[8]  S. Teo Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273 , 2021, Journal of pharmacy practice.

[9]  M. Tokeshi,et al.  Delivery of Oligonucleotides Using a Self-Degradable Lipid-Like Material , 2021, Pharmaceutics.

[10]  A. Estevez,et al.  Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles. , 2021, International journal of pharmaceutics.

[11]  H. Okano,et al.  Selective suppression of polyglutamine-expanded protein by lipid nanoparticle-delivered siRNA targeting CAG expansions in the mouse CNS , 2021, Molecular therapy. Nucleic acids.

[12]  Y. Kalaidzidis,et al.  Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale , 2020, bioRxiv.

[13]  I. Sakuma,et al.  Investigating the optimum size of nanoparticles for their delivery into the brain assisted by focused ultrasound-induced blood–brain barrier opening , 2020, Scientific Reports.

[14]  C. Bennett,et al.  Antisense Drugs Make Sense for Neurological Diseases. , 2020, Annual review of pharmacology and toxicology.

[15]  R. Langer,et al.  Advances in oligonucleotide drug delivery , 2020, Nature Reviews Drug Discovery.

[16]  F. Rigo,et al.  The atlas of RNase H antisense oligonucleotide distribution and activity in the CNS of rodents and non-human primates following central administration , 2020, bioRxiv.

[17]  Timothy A. Miller,et al.  Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. , 2020, The New England journal of medicine.

[18]  Qiaobing Xu,et al.  Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection , 2020, Science Advances.

[19]  A. Vikram,et al.  Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development , 2020, Journal of clinical medicine.

[20]  Beob Soo Kim,et al.  Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucose‐Coated Polymeric Nanocarrier , 2020, Angewandte Chemie.

[21]  T. Koch,et al.  Nuclear and Cytoplasmatic Quantification of Unconjugated, Label-Free Locked Nucleic Acid Oligonucleotides , 2020, Nucleic acid therapeutics.

[22]  Qiaobing Xu,et al.  Efficient Delivery of Antisense Oligonucleotides Using Bioreducible Lipid Nanoparticles In Vitro and In Vivo , 2020, Molecular therapy. Nucleic acids.

[23]  J. Elstrott,et al.  Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model , 2020, The Journal of Neuroscience.

[24]  Rachel S. Riley,et al.  Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. , 2019, Journal of controlled release : official journal of the Controlled Release Society.

[25]  Yuan Rui,et al.  Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. , 2019, Nanoscale.

[26]  K. T. Householder,et al.  Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice , 2019, Scientific Reports.

[27]  S. Schwartz,et al.  RNA regulation of the antiviral protein 2′‐5′‐oligoadenylate synthetase , 2019, Wiley interdisciplinary reviews. RNA.

[28]  Nick C Fox,et al.  Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. , 2018, Nature Medicine.

[29]  Philip J. Santangelo,et al.  High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing , 2018, Proceedings of the National Academy of Sciences.

[30]  S. Solomon,et al.  Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis , 2018, The New England journal of medicine.

[31]  Melanie A. Huntley,et al.  Diverse Brain Myeloid Expression Profiles Reveal Distinct Microglial Activation States and Aspects of Alzheimer's Disease Not Evident in Mouse Models. , 2018, Cell reports.

[32]  R. J. Ramamurthi,et al.  Nusinersen versus Sham Control in Infantile‐Onset Spinal Muscular Atrophy , 2017, The New England journal of medicine.

[33]  D. Saunders,et al.  Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles , 2017, Front. Neurosci..

[34]  E. Huang,et al.  Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease , 2017, Science Translational Medicine.

[35]  K. Schoch,et al.  Antisense Oligonucleotides: Translation from Mouse Models to Human Neurodegenerative Diseases , 2017, Neuron.

[36]  Stanley T Crooke,et al.  Cellular uptake and trafficking of antisense oligonucleotides , 2017, Nature Biotechnology.

[37]  Eric T. Wang,et al.  Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics , 2017, Proceedings of the National Academy of Sciences.

[38]  Dennis W Dickson,et al.  Pathology of Neurodegenerative Diseases. , 2017, Cold Spring Harbor perspectives in biology.

[39]  Assaf Zinger,et al.  Theranostic barcoded nanoparticles for personalized cancer medicine , 2016, Nature Communications.

[40]  Benjamin E. L. Lauffer,et al.  Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses , 2016, Nature Communications.

[41]  R. Juliano,et al.  The delivery of therapeutic oligonucleotides , 2016, Nucleic acids research.

[42]  H. Hirai,et al.  Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. , 2016, Biomaterials.

[43]  C. Bennett,et al.  Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. , 2015, Advanced drug delivery reviews.

[44]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[45]  B. MacVicar,et al.  Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain , 2013, Molecular therapy. Nucleic acids.

[46]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[47]  Sarah Seifert,et al.  Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape , 2013, Nature Biotechnology.

[48]  S. Schildge,et al.  Isolation and culture of mouse cortical astrocytes. , 2013, Journal of visualized experiments : JoVE.

[49]  R. Jain,et al.  Nanoparticulate systems as drug carriers: the need , 2012, Nanoparticulate Drug Delivery.

[50]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[51]  G. Smyth,et al.  Camera: a competitive gene set test accounting for inter-gene correlation , 2012, Nucleic acids research.

[52]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[53]  Gert Storm,et al.  Endosomal escape pathways for delivery of biologicals. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[54]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[55]  K. G. Rajeev,et al.  Rational design of cationic lipids for siRNA delivery , 2010, Nature Biotechnology.

[56]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[57]  Erhard Rahm,et al.  FUNC: a package for detecting significant associations between gene sets and ontological annotations , 2007, BMC Bioinformatics.

[58]  F. Cordelières,et al.  A guided tour into subcellular colocalization analysis in light microscopy , 2006, Journal of microscopy.

[59]  Masahiko Watanabe,et al.  Optimization of oligodendrocyte progenitor cell culture method for enhanced survival , 2005, Journal of Neuroscience Methods.

[60]  Akiko Iwasaki,et al.  Recognition of single-stranded RNA viruses by Toll-like receptor 7. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Serratosa,et al.  High‐yield isolation of murine microglia by mild trypsinization , 2003, Glia.

[62]  A. Levin A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. , 1999, Biochimica et Biophysica Acta.

[63]  D Giulian,et al.  Characterization of ameboid microglia isolated from developing mammalian brain , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  K. McCarthy,et al.  Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue , 1980, The Journal of cell biology.

[65]  M. Wood,et al.  Antisense oligonucleotides: the next frontier for treatment of neurological disorders , 2018, Nature Reviews Neurology.

[66]  Thomas D. Wu,et al.  GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality , 2016, Statistical Genomics.

[67]  P. Wong,et al.  Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System. , 2015, Molecular therapy. Nucleic acids.

[68]  T. Möller,et al.  Microglia cell culture: a primer for the novice. , 2011, Methods in molecular biology.

[69]  S. Agrawal,et al.  Complement activation and hemodynamic changes following intravenous administration of phosphorothioate oligonucleotides in the monkey. , 1994, Antisense research and development.