A variation-aware adaptive voltage scaling technique based on in-situ delay monitoring

In this paper, we present an adaptive voltage scaling (AVS) scheme to tune the supply voltage of digital circuits according to variations. Compared to worst-case designs, which produce fixed and excessively large safety margins, a considerable amount of energy can be saved by this approach. The AVS technique is based on in-situ delay monitoring, i.e. observing the timing in critical paths. For this task, we propose a Pre-Error flip-flop, that is capable of detecting late data transitions - so-called pre-errors. We provide an in-depth analysis, that is based on a Markov model, to describe the closed loop voltage regulation. We simulated the power saving potential compared to the worst-case design and obtained a reduction of 13.5% in active energy for a negligible error rate of 1E-15. Moreover, we illustrate the opportunity to further reduce the power consumption when tolerating higher error rates. This way, our approach can gain the optimal power saving for a given allowed failure probability.

[1]  Stephan Henzler,et al.  In-Situ Delay Characterization and Local Supply Voltage Adjustment for Compensation of Local Parametric Variations , 2007, IEEE Journal of Solid-State Circuits.

[2]  K.A. Bowman,et al.  Energy-Efficient and Metastability-Immune Resilient Circuits for Dynamic Variation Tolerance , 2009, IEEE Journal of Solid-State Circuits.

[3]  Mark Horowitz,et al.  Scaling, Power and the Future of CMOS , 2007, 20th International Conference on VLSI Design held jointly with 6th International Conference on Embedded Systems (VLSID'07).

[4]  S. Minehane,et al.  Variation in Transistor Performance and Leakage in Nanometer-Scale Technologies , 2008, IEEE Transactions on Electron Devices.

[5]  David M. Bull,et al.  RazorII: In Situ Error Detection and Correction for PVT and SER Tolerance , 2009, IEEE Journal of Solid-State Circuits.

[6]  Soraya Ghiasi,et al.  A Distributed Critical-Path Timing Monitor for a 65nm High-Performance Microprocessor , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.