Joint estimation of location, dispersion, and random effects in robust design

This article presents a methodology for simultaneously modeling three components of a general mixed-model approach to robust design—location (fixed) effects, dispersion effects, and random effects. Control, noise, and random factors can be accommodated with this approach. Parameters associated with all three are estimated jointly using residual maximum likelihood and assuming normality. Simulated and real datasets illustrate the key concepts and advantages over previously proposed approaches.

[1]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[2]  S. R. Searle Linear Models , 1971 .

[3]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[4]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[5]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[6]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[7]  R. N. Kackar,et al.  Off-line quality control in integrated circuit fabrication using experimental design , 1983 .

[8]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[9]  Daryl Pregibon,et al.  Review: P. McCullagh, J. A. Nelder, Generalized Linear Models , 1984 .

[10]  C. R. Henderson Applications of linear models in animal breeding , 1984 .

[11]  Genichii Taguchi,et al.  Introduction to quality engineering. designing quality into products a , 1986 .

[12]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[13]  A. C. Shoemaker,et al.  Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios , 1987 .

[14]  J. John Recovery of inter-block information , 1987 .

[15]  M. Aitkin Modelling variance heterogeneity in normal regression using GLIM , 1987 .

[16]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[17]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[18]  D. Ruppert,et al.  [Signal-to-Noise Ratios, Performance Criteria, and Transformations]: Discussion , 1988 .

[19]  Willis L. Owen,et al.  Modern Statistical Selection, Part I , 1988 .

[20]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[21]  John A. Nelder,et al.  Generalized linear models for the analysis of Taguchi-type experiments , 1991 .

[22]  R. Mclean,et al.  A Unified Approach to Mixed Linear Models , 1991 .

[23]  Joseph Sedransk,et al.  Bayesian and frequentist predictive inference for the patterns of care studies , 1991 .

[24]  Kwok-Leung Tsui,et al.  Economical experimentation methods for robust design , 1991 .

[25]  G. Robinson That BLUP is a Good Thing: The Estimation of Random Effects , 1991 .

[26]  Stephen Jones,et al.  Split-plot designs for robust product experimentation , 1992 .

[27]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[28]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[29]  J. Engel,et al.  Modelling Variation in Industrial Experiments , 1992 .

[30]  A. Verbyla,et al.  Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics , 1993 .

[31]  Russ Wolfinger,et al.  Computing Gaussian Likelihoods and Their Derivatives for General Linear Mixed Models , 1994, SIAM J. Sci. Comput..

[32]  David M. Steinberg,et al.  Dispersion Effects in Robust-Design Experiments with Noise Factors , 1994 .

[33]  R. Littell SAS System for Mixed Models , 1996 .