A Comparison of Rates of Convergence of Two Inexact Proximal Point Algorithms

We compare the linear rate of convergence estimates for two inexact proximal point methods. The first one is the classical inexact scheme introduced by Rockafellar, for which we obtain a slightly better estimate than the one given in [16]. The second one is the hybrid inexact proximal point approach introduced in [25, 22]. The advantage of the hybrid methods is that they use more constructive and less restrictive tolerance criteria in inexact solution of subproblems, while preserving all the favorable properties of the classical method, including global convergence and local linear rate of convergence under standard assumptions. In this paper, we obtain a linear convergence estimate for the hybrid algorithm [22], which is better than the one for the classical method [16], even if our improved estimate is used for the latter.

[1]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[2]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[3]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[4]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[5]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[6]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[7]  F. Luque Asymptotic convergence analysis of the proximal point algorithm , 1984 .

[8]  A. Auslender Numerical methods for nondifferentiable convex optimization , 1987 .

[9]  Michael C. Ferris,et al.  Finite termination of the proximal point algorithm , 1991, Math. Program..

[10]  Osman Güler,et al.  New Proximal Point Algorithms for Convex Minimization , 1992, SIAM J. Optim..

[11]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[12]  Patricia Tossings The perturbed proximal point algorithm and some of its applications , 1994 .

[13]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[14]  A. Iusem,et al.  Enlargement of Monotone Operators with Applications to Variational Inequalities , 1997 .

[15]  R. Cominetti Coupling the Proximal Point Algorithm with Approximation Methods , 1997 .

[16]  M. V. Solodovy,et al.  A Hybrid Projection{proximal Point Algorithm , 1998 .

[17]  B. Svaiter,et al.  ε-Enlargements of Maximal Monotone Operators: Theory and Applications , 1998 .

[18]  Mikhail V. Solodov,et al.  A Globally Convergent Inexact Newton Method for Systems of Monotone Equations , 1998 .

[19]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[20]  J. Burke,et al.  A Variable Metric Proximal Point Algorithm for Monotone Operators , 1999 .

[21]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[22]  M. Solodov,et al.  A Hybrid Approximate Extragradient – Proximal Point Algorithm Using the Enlargement of a Maximal Monotone Operator , 1999 .

[23]  Benar Fux Svaiter,et al.  Error bounds for proximal point subproblems and associated inexact proximal point algorithms , 2000, Math. Program..

[24]  Benar Fux Svaiter,et al.  A Truly Globally Convergent Newton-Type Method for the Monotone Nonlinear Complementarity Problem , 1999, SIAM J. Optim..

[25]  Benar Fux Svaiter,et al.  An Inexact Hybrid Generalized Proximal Point Algorithm and Some New Results on the Theory of Bregman Functions , 2000, Math. Oper. Res..

[26]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..