Mathematical programming in optimal plastic design

Abstract The paper is intended to discuss problems of optimal plastic design of structures from the view point of mathematical programming. Existing methods of optimal design are shown to be corresponding to various formulations of mathematical programs. The duality theorems of mathematical programming can then be used to obtain necessary and sufficient criteria of optimum. Programming as a method of numerical solution is also indicated.

[1]  G. Zoutendijk,et al.  Methods of Feasible Directions , 1962, The Mathematical Gazette.

[2]  William S. Dorn A Duality Theorem for Convex Programs , 1960, IBM J. Res. Dev..

[3]  J. B. Rosen The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints , 1960 .

[4]  William Prager,et al.  Minimum-Weight Design of a Portal Frame , 1956 .

[5]  W. Freiberger,et al.  Minimum weight design of circular plates , 1956 .

[6]  L. G. Vargo Nonlinear Minimum-Weight Design of Planar Structures , 1956 .

[7]  J. Foulkes Minimum weight design and the theory of plastic collapse , 1953 .

[8]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[9]  H. J. Greenberg,et al.  Linear programming and plastic limit analysis of structures , 1957 .

[10]  Harvey J. Greenberg,et al.  Automatic design of optimal structures , 1964 .

[11]  Minimum volume design of frameworks and discs for alternative loading systems , 1968 .

[12]  R. K. Livesley THE AUTOMATIC DESIGN OF STRUCTURAL FRAMES , 1956 .

[13]  William Prager,et al.  A General Theory of Optimal Plastic Design , 1967 .

[14]  E. M. L. Beale,et al.  Nonlinear and Dynamic Programming , 1965 .

[15]  W. S. Hemp Studies in the theory of Michell structures , 1966 .

[16]  Minimum-weight design of beams for multiple loading☆ , 1967 .

[17]  J. Foulkes,et al.  The minimum-weight design of structural frames , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[18]  R. Shield,et al.  Optimum design methods for multiple loading , 1963 .

[19]  C. E. Lemke,et al.  Virtual work, linear programming and plastic limit analysis , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  Jacques Heyman,et al.  ON THE ABSOLUTE MINIMUM WEIGHT DESIGN OF FRAMED STRUCTURES , 1959 .

[21]  D. C. Drucker,et al.  Design for Minimum Weight. , 1956 .

[22]  R. T. Shield OPTIMUM DESIGN METHODS FOR STRUCTURES , 1960 .

[23]  William Prager Mathematical Programming and Theory of Structures , 1965 .