Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale

Scientific aspects of technologies based on application of non-equilibrium oxygen plasma are presented. Oxygen plasma is sustained by an electrodeless discharge to facilitate a high concentration of neutral reactive species, in particular O atoms. The species interact with solid materials causing surface functionalization, removal or organic impurities, nanostructuring of polymers, selective etching of polymer composites or synthesis of metal-oxide nanoparticles. The flux of O atoms onto the surface-facing plasma is often between 1020 and 1023 m−2 s−1. While the physical interaction with solid materials (i.e. heterogeneous surface recombination) does not depend much on the sample temperature, the chemical interactions (functionalization, etching, oxidation) increase significantly with increasing temperature. The key treatment parameters are therefore the fluence of O atoms onto the sample surface and its temperature. The recommended ranges of parameters for various technologies are shown in the graphical abstract.

[1]  M. Mozetič,et al.  Neutral reactive gaseous species in reactors suitable for plasma surface engineering , 2019, Surface and Coatings Technology.

[2]  M. Mozetič,et al.  Polyethylene terephthalate (PET) surface modification by VUV and neutral active species in remote oxygen or hydrogen plasmas , 2019, Plasma Processes and Polymers.

[3]  D. Voloshin,et al.  Oxygen (3P) atom recombination on a Pyrex surface in an O2 plasma , 2019, Plasma Sources Science and Technology.

[4]  M. Mozetič,et al.  Initial stages in functionalization of polystyrene upon treatment with oxygen plasma late flowing afterglow , 2018, Plasma Sources Science and Technology.

[5]  M. Mozetič,et al.  Atomic oxygen and hydrogen loss coefficient on functionalized polyethylene terephthalate, polystyrene, and polytetrafluoroethylene polymers , 2018 .

[6]  L. Nahon,et al.  Controlled production of atomic oxygen and nitrogen in a pulsed radio-frequency atmospheric-pressure plasma , 2017 .

[7]  M. Mozetič,et al.  New developments in surface functionalization of polymers using controlled plasma treatments , 2017 .

[8]  M. Hori,et al.  Investigation of the radially resolved oxygen dissociation degree and local mean electron energy in oxygen plasmas in contact with different surface materials , 2017 .

[9]  J. Gudmundsson,et al.  The role of the metastable O2(b1Σg+) and energy-dependent secondary electron emission yields in capacitively coupled oxygen discharges , 2016 .

[10]  M. Mozetič,et al.  Low-Pressure Plasma-Assisted Polymer Surface Modifications , 2016 .

[11]  M. Mozetič,et al.  Oxygen atom loss coefficient of carbon nanowalls , 2015 .

[12]  S. Starikovskaia,et al.  TALIF measurements of oxygen atom density in the afterglow of a capillary nanosecond discharge , 2015 .

[13]  M. Mozetič,et al.  Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials , 2015 .

[14]  M. Mozetič,et al.  Etching of Blood Proteins in the Early and Late Flowing Afterglow of Oxygen Plasma , 2014 .

[15]  M. Mozetič,et al.  Controlling the oxygen species density distributions in the flowing afterglow of O2/Ar–O2 surface-wave microwave discharges , 2014 .

[16]  P. Swift,et al.  Investigation of atomic oxygen density in a capacitively coupled O2/SF6 discharge using two-photon absorption laser-induced fluorescence spectroscopy and a Langmuir probe , 2013 .

[17]  M. Mozetič,et al.  Etching of polyethylene terephthalate thin films by neutral oxygen atoms in the late flowing afterglow of oxygen plasma , 2012 .

[18]  M. Mozetič,et al.  Recent Progress in Surface Modification of Polyvinyl Chloride , 2012, Materials.

[19]  R. Bruce,et al.  Direct and quantitative evidence for buckling instability as a mechanism for roughening of polymer during plasma etching , 2012 .

[20]  K. Kutasi,et al.  O2 dissociation in Ar–O2 surface-wave microwave discharges , 2012 .

[21]  T. Belmonte,et al.  Interaction Mechanisms between ArO2 Post-discharge and Biphenyl , 2012 .

[22]  P. Macko,et al.  Surface loss probability of atomic oxygen , 2012 .

[23]  M. Mozetič,et al.  Interaction between model poly(ethylene terephthalate) thin films and weakly ionised oxygen plasma , 2012 .

[24]  K. Kutasi,et al.  Active species downstream of an Ar–O2 surface-wave microwave discharge for biomedicine, surface treatment and nanostructuring , 2011 .

[25]  F. Poncin‐Epaillard,et al.  Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid I: Behaviour of Thin Films , 2011 .

[26]  David B. Graves,et al.  Relationship between nanoscale roughness and ion-damaged layer in argon plasma exposed polystyrene films , 2010 .

[27]  M. Mozetič,et al.  Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples , 2009 .

[28]  M. Hori,et al.  Diagnostics of surface wave excited Kr/O2 plasma for low-temperature oxidation processes , 2007 .

[29]  M. Mozetič,et al.  Oxygen atom density in microwave oxygen plasma , 2007 .

[30]  P. Coelho,et al.  Active species in a large volume N2–O2 post-discharge reactor , 2007 .

[31]  Anatoly P. Napartovich,et al.  Physics and engineering of singlet delta oxygen production in low-temperature plasma , 2007 .

[32]  A. Rousseau,et al.  Plasma-photocatalyst interaction: Production of oxygen atoms in a low pressure discharge , 2005 .

[33]  R. Berjoan,et al.  Recombination coefficient of atomic oxygen on ceramic materials under earth re-entry conditions by optical emission spectroscopy , 2003 .

[34]  M. Kushner,et al.  A model for plasma modification of polypropylene using atmospheric pressure discharges , 2003 .

[35]  W. Graham,et al.  Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma , 2002 .

[36]  M. Mozetič,et al.  A method of studying carbon particle distribution in paint films , 2000 .

[37]  M. Baeva,et al.  Experimental investigation and modelling of a low-pressure pulsed microwave discharge in oxygen , 2000 .

[38]  Jacques Amouroux,et al.  HEAT TRANSFER FROM OXYGEN ATOMS RECOMBINATION ON SILICON CARBIDE: CHEMICAL EVOLUTION OF THE MATERIAL SURFASE , 2000 .

[39]  Yuri Ralchenko,et al.  NIST Atomic Spectra Database , 2000 .

[40]  T. A. Chesnokova,et al.  Recombination probabilities for oxygen atoms on a polyethylene terephthalate surface , 1997 .

[41]  Y. Hatanaka,et al.  Measurements of catalytic efficiency of surfaces for the removal of atomic oxygen using NO*2 continuum , 1991 .

[42]  T. Slanger,et al.  Surface chemistry of metastable oxygen. II. Destruction of O2(a 1Δg) , 1989 .

[43]  Б. Р. Шуб,et al.  Гетерогенная Релаксация Синглетного Кислорода , 1981 .

[44]  T. Marshall Surface Recombination of Nitrogen Atoms upon Quartz , 1962 .