Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy

Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an “inverted” BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.

[1]  William A. Curtin,et al.  Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy , 2016 .

[2]  H. Fraser,et al.  Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1 , 2016 .

[3]  Jien-Wei Yeh,et al.  High-Entropy Alloys: Basic Concepts , 2014 .

[4]  Adam L. Pilchak,et al.  Development of a Refractory High Entropy Superalloy , 2016, Entropy.

[5]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[6]  D. Miracle Overview No. 104 The physical and mechanical properties of NiAl , 1993 .

[7]  Howard Kuhn,et al.  Mechanical testing and evaluation , 2000 .

[9]  O. Graessel,et al.  High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application , 2000 .

[10]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[11]  S. Gorsse,et al.  Mapping the world of complex concentrated alloys , 2017 .

[12]  Daniel B. Miracle,et al.  Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr , 2018 .

[13]  Nikita Stepanov,et al.  Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy , 2015 .

[14]  Nikita Stepanov,et al.  An AlNbTiVZr0.5 high-entropy alloy combining high specific strength and good ductility , 2015 .

[15]  Oleg N. Senkov,et al.  Low-Density, Refractory Multi-Principal Element Alloys of the Cr-Nb-Ti-V-Zr System: Microstructure and Phase Analysis (Postprint) , 2013 .

[16]  F. Prima,et al.  On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects , 2012 .

[17]  Tao Wang,et al.  A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties , 2014 .

[18]  Daniel B. Miracle,et al.  Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys , 2014, JOM.

[19]  J. Yeh,et al.  Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining , 2016 .

[20]  Ke An,et al.  Phase‐Transformation Ductilization of Brittle High‐Entropy Alloys via Metastability Engineering , 2017, Advanced materials.

[21]  N. Chen,et al.  Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys , 2017 .

[22]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[23]  Oleg N. Senkov,et al.  Microstructure and properties of a refractory high-entropy alloy after cold working , 2015 .

[24]  I. Guillot,et al.  On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy , 2015 .

[25]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[26]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[27]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[28]  C. Woodward,et al.  Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system , 2013 .

[29]  C. Woodward,et al.  Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2011 .

[30]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[31]  J. Embury Plastic flow in dispersion hardened materials , 1985 .

[32]  N. Schell,et al.  Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties , 2018 .

[33]  D. Chrzan,et al.  Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. , 2014, Physical review letters.

[34]  Karin A. Dahmen,et al.  Fundamental deformation behavior in high-entropy alloys: An overview , 2017 .

[35]  F. Prima,et al.  Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects , 2013 .

[36]  D. Ponge,et al.  Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability , 2011 .

[37]  C. Persson,et al.  Alloy design for intrinsically ductile refractory high-entropy alloys , 2016 .

[38]  B. Viguier,et al.  Ordinary dislocations in γ-TiAl: Cusp unzipping, jog dragging and stress anomaly , 2000 .

[39]  I. Guillot,et al.  Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms , 2018 .

[40]  Chuang Dong,et al.  Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions , 2018 .

[41]  I. Guillot,et al.  Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity , 2017 .

[42]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[43]  Dierk Raabe,et al.  Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation , 2017, Nature.