TMS Evidence for the Involvement of the Right Occipital Face Area in Early Face Processing

[1]  A. Young,et al.  Familiarity decisions for faces presented to the left and right cerebral hemispheres , 1985, Brain and Cognition.

[2]  Theodor Landis,et al.  Are Unilateral Right Posterior Cerebral Lesions Sufficient to Cause Prosopagnosia? Clinical and Radiological Findings in Six Additional Patients , 1986, Cortex.

[3]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[5]  G. Winocur,et al.  What Is Special about Face Recognition? Nineteen Experiments on a Person with Visual Object Agnosia and Dyslexia but Normal Face Recognition , 1997, Journal of Cognitive Neuroscience.

[6]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[7]  Alan Cowey,et al.  Magnetic stimulation studies of visual cognition , 1998, Trends in Cognitive Sciences.

[8]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[9]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[10]  N. Kanwisher,et al.  Stages of processing in face perception: an MEG study , 2002, Nature Neuroscience.

[11]  J. Keenan,et al.  Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia , 2002, Neurology.

[12]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[13]  Marcia Grabowecky,et al.  Neural Correlates of the Left-Visual-Field Superiority in Face Perception Appear at Multiple Stages of Face Processing , 2003, Journal of Cognitive Neuroscience.

[14]  Frederick A A Kingdom,et al.  Color brings relief to human vision , 2003, Nature Neuroscience.

[15]  Walsh,et al.  Transcranial magnetic stimulation: a neurochromometrics of mind. , 2003 .

[16]  J. Faubert,et al.  Configural face encoding and spatial frequency information , 2003, Perception & psychophysics.

[17]  R. Dolan,et al.  Distinct spatial frequency sensitivities for processing faces and emotional expressions , 2003, Nature Neuroscience.

[18]  Andreas Kleinschmidt,et al.  Scale invariant adaptation in fusiform face-responsive regions , 2004, NeuroImage.

[19]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[20]  R. Dolan,et al.  fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. , 2004, Journal of neurophysiology.

[21]  N. Kanwisher,et al.  Face perception: domain specific, not process specific. , 2004, Neuron.

[22]  Joachim Bodamer,et al.  Die Prosop-Agnosie , 2004, Archiv für Psychiatrie und Nervenkrankheiten.

[23]  A. Treves,et al.  Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain , 2005, Nature Neuroscience.

[24]  N. Kanwisher,et al.  The Neural Basis of the Behavioral Face-Inversion Effect , 2005, Current Biology.

[25]  A. Young,et al.  Understanding the recognition of facial identity and facial expression , 2005, Nature Reviews Neuroscience.

[26]  N. Kanwisher,et al.  The M170 is selective for faces, not for expertise , 2005, Neuropsychologia.

[27]  Q. Vuong,et al.  The Respective Role of Low and High Spatial Frequencies in Supporting Configural and Featural Processing of Faces , 2005, Perception.

[28]  Juha Silvanto,et al.  Double dissociation of V1 and V5/MT activity in visual awareness. , 2005, Cerebral cortex.

[29]  R. Hari,et al.  Face recognition and cortical responses show similar sensitivity to noise spatial frequency. , 2005, Cerebral cortex.

[30]  Neil G. Muggleton,et al.  TMS over right posterior parietal cortex induces neglect in a scene-based frame of reference , 2006, Neuropsychologia.

[31]  R. Goebel,et al.  Cerebral Cortex doi:10.1093/cercor/bhj005 Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus , 2005 .

[32]  Kenneth F. Valyear,et al.  The fusiform face area is not sufficient for face recognition: Evidence from a patient with dense prosopagnosia and no occipital face area , 2006, Neuropsychologia.

[33]  Vincent Walsh,et al.  Right parietal cortex plays a critical role in change blindness. , 2006, Cerebral cortex.

[34]  Seth E. Bouvier,et al.  Behavioral deficits and cortical damage loci in cerebral achromatopsia. , 2006, Cerebral cortex.

[35]  N. Kanwisher,et al.  The fusiform face area: a cortical region specialized for the perception of faces , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Margot J. Taylor,et al.  Inversion and contrast-reversal effects on face processing assessed by MEG , 2006, Brain Research.

[37]  Alison J. Wiggett,et al.  Behavioral / Systems / Cognitive Functional Magnetic Resonance Imaging Investigation of Overlapping Lateral Occipitotemporal Activations Using Multi-Voxel Pattern Analysis , 2006 .

[38]  Pia Rotshtein,et al.  Distinct and Convergent Visual Processing of High and Low Spatial Frequency Information in Faces , 2007 .