Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae).

BACKGROUND AND AIMS The Arecoideae is the largest and most diverse of the five subfamilies of palms (Arecaceae/Palmae), containing >50 % of the species in the family. Despite its importance, phylogenetic relationships among Arecoideae are poorly understood. Here the most densely sampled phylogenetic analysis of Arecoideae available to date is presented. The results are used to test the current classification of the subfamily and to identify priority areas for future research. METHODS DNA sequence data for the low-copy nuclear genes PRK and RPB2 were collected from 190 palm species, covering 103 (96 %) genera of Arecoideae. The data were analysed using the parsimony ratchet, maximum likelihood, and both likelihood and parsimony bootstrapping. KEY RESULTS AND CONCLUSIONS Despite the recovery of paralogues and pseudogenes in a small number of taxa, PRK and RPB2 were both highly informative, producing well-resolved phylogenetic trees with many nodes well supported by bootstrap analyses. Simultaneous analyses of the combined data sets provided additional resolution and support. Two areas of incongruence between PRK and RPB2 were strongly supported by the bootstrap relating to the placement of tribes Chamaedoreeae, Iriarteeae and Reinhardtieae; the causes of this incongruence remain uncertain. The current classification within Arecoideae was strongly supported by the present data. Of the 14 tribes and 14 sub-tribes in the classification, only five sub-tribes from tribe Areceae (Basseliniinae, Linospadicinae, Oncospermatinae, Rhopalostylidinae and Verschaffeltiinae) failed to receive support. Three major higher level clades were strongly supported: (1) the RRC clade (Roystoneeae, Reinhardtieae and Cocoseae), (2) the POS clade (Podococceae, Oranieae and Sclerospermeae) and (3) the core arecoid clade (Areceae, Euterpeae, Geonomateae, Leopoldinieae, Manicarieae and Pelagodoxeae). However, new data sources are required to elucidate ambiguities that remain in phylogenetic relationships among and within the major groups of Arecoideae, as well as within the Areceae, the largest tribe in the palm family.

[1]  B. Oxelman,et al.  Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae)--a multigene phylogenetic approach with relative dating. , 2009, Systematic biology.

[2]  B. Payseur,et al.  Failure of the ILD to determine data combinability for slow loris phylogeny. , 2001, Systematic biology.

[3]  J. Dransfield,et al.  A new phylogenetic classification of the palm family , 2005 .

[4]  W. Hahn A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data. , 2002, Molecular phylogenetics and evolution.

[5]  Nicolas Salamin,et al.  Sympatric speciation in palms on an oceanic island , 2006, Nature.

[6]  W. Hahn,et al.  A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. , 2002, Systematic biology.

[7]  J. Dransfield,et al.  Mid-Tertiary dispersal, not Gondwanan vicariance explains distribution patterns in the wax palm subfamily (Ceroxyloideae: Arecaceae). , 2007, Molecular phylogenetics and evolution.

[8]  S. Nadot,et al.  Flowers on the Tree of Life: Evolution of the palm androecium as revealed by character mapping on a supertree , 2011 .

[9]  C. Bult,et al.  TESTING SIGNIFICANCE OF INCONGRUENCE , 1994 .

[10]  J. Dransfield,et al.  A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny , 2006 .

[11]  M. Chase,et al.  Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. , 2009, Systematic biology.

[12]  B. Oxelman,et al.  Evolution of a RNA polymerase gene family in Silene (Caryophyllaceae)-incomplete concerted evolution and topological congruence among paralogues. , 2004, Systematic biology.

[13]  Carol J. Bult,et al.  Constructing a Significance Test for Incongruence , 1995 .

[14]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[15]  Nicolas Salamin,et al.  Assessing internal support with large phylogenetic DNA matrices. , 2003, Molecular phylogenetics and evolution.

[16]  W. Baker,et al.  Biotic Evolution and Environmental Change in Southeast Asia: Biogeography and distribution patterns of Southeast Asian palms , 2012 .

[17]  W. Baker,et al.  A revision of the palm genera (Arecaceae) of New Caledonia , 2008, Kew Bulletin.

[18]  J. Doyle,et al.  A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes , 2002, Plant Systematics and Evolution.

[19]  M. Crisp,et al.  Paralogy and orthology in the MALVACEAE rpb2 gene family: investigation of gene duplication in hibiscus. , 2004, Molecular biology and evolution.

[20]  M. Chase,et al.  Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. , 2010, Annals of botany.

[21]  F. K. Barker,et al.  The utility of the incongruence length difference test. , 2002, Systematic biology.

[22]  J. Wiens Combining data sets with different phylogenetic histories. , 1998, Systematic biology.

[23]  M. S. Lee Uninformative characters and apparent conflict between molecules and morphology. , 2001, Molecular biology and evolution.

[24]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[25]  Phylogeny of the Palm Tribe Chamaedoreeae (Arecaceae) Based on Plastid Dna Sequences , 2007 .

[26]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Nixon,et al.  The Parsimony Ratchet, a New Method for Rapid Parsimony Analysis , 1999, Cladistics : the international journal of the Willi Hennig Society.

[28]  R. Bateman,et al.  Molecular phylogeny of the palm genus Chamaedorea, based on the low-copy nuclear genes PRK and RPB2. , 2006, Molecular phylogenetics and evolution.

[29]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[30]  G. Zizka,et al.  Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. , 2009, Molecular phylogenetics and evolution.

[31]  Blaise Du Puy The Palms of Madagascar , 1997, Biodiversity & Conservation.

[32]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[33]  M. A. Wilson,et al.  Chloroplast DNA evolves slowly in the palm family (Arecaceae). , 1990, Molecular biology and evolution.

[34]  B. Oxelman,et al.  Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. , 2001, Molecular phylogenetics and evolution.

[35]  Michael T. Clegg,et al.  Relative rates of nucleotide substitution at the rbcl locus of monocotyledonous plants , 1992, Journal of Molecular Evolution.

[36]  Margarita Mauro-Herrera,et al.  Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut , 2009, PloS one.

[37]  Jie Luo,et al.  RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. , 2004, Molecular phylogenetics and evolution.

[38]  J. Terborgh,et al.  Falling palm fronds structure Amazonian rainforest sapling communities , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  M. Chase,et al.  Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). , 2006, Molecular phylogenetics and evolution.

[40]  C. Orme,et al.  Noise and incongruence: interpreting results of the incongruence length difference test. , 2000, Molecular phylogenetics and evolution.

[41]  J. Doyle,et al.  Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). , 2001, Molecular phylogenetics and evolution.

[42]  Bee F. Gunn The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera , 2004 .

[43]  M. Balick,et al.  Useful palms of the world: a synoptic bibliography. , 1990 .

[44]  N. Murakami,et al.  Phylogeny of Litsea and related genera (Laureae-Lauraceae) based on analysis of rpb2 gene sequences , 2009, Journal of Plant Research.

[45]  C. Specht,et al.  Phylogenetic estimation of the core Bromelioids with an emphasis on the genus Aechmea (Bromeliaceae). , 2010, Molecular phylogenetics and evolution.

[46]  C. Lewis,et al.  Molecular Phylogenetic Studies of Caribbean Palms (Arecaceae) and Their Relationships to Biogeography and Conservation , 2008, The Botanical Review.

[47]  J. Dransfield,et al.  Phylogeny and evolution of morphological characters in tribe Chamaedoreeae (Arecaceae). , 2009 .

[48]  B. Oxelman,et al.  The origin and number of introductions of the Hawaiian endemic Silene species (Caryophyllaceae). , 2007, American journal of botany.

[49]  B. Bremer,et al.  Discovery of paralogous nuclear gene sequences coding for the second-largest subunit of RNA polymerase II (RPB2) and their phylogenetic utility in gentianales of the asterids. , 2000, Molecular biology and evolution.

[50]  H. E. Moore,et al.  The structure of the acervulus, the flower cluster of chamaedoreoid palms. , 1978 .

[51]  M. Chase,et al.  Coding and noncoding plastid DNA in palm systematics. , 2001, American journal of botany.

[52]  B. Hall,et al.  Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. , 1998, Molecular biology and evolution.

[53]  G. Lecointre,et al.  When does the incongruence length difference test fail? , 2002, Molecular biology and evolution.

[54]  F. Feltus,et al.  Novel nuclear intron‐spanning primers for Arecaceae evolutionary biology , 2008, Molecular ecology resources.

[55]  Paul O. Lewis,et al.  Software manual for PAUPRat: A tool to implement Parsimony Ratchet searches using PAUP* , 2006 .

[56]  A. Cuenca,et al.  A dated phylogeny of the palm tribe Chamaedoreeae supports Eocene dispersal between Africa, North and South America. , 2008, Molecular phylogenetics and evolution.

[57]  P. Vorster Genera Palmarum. A classification of palms based on the work of Harold E. Moore, Jr. , 1988 .

[58]  H. Balslev,et al.  Phylogeny and divergence times of Bactridinae (Arecaceae, Palmae) based on plastid and nuclear DNA sequences , 2011 .

[59]  P. Jordano,et al.  Seed survival and dispersal of an endemic Atlantic forest palm: the combined effects of defaunation and forest fragmentation , 2006 .

[60]  C. Lewis,et al.  Molecular Phylogenetics of Tribe Geonomeae (Arecaceae) Using Nuclear DNA Sequences of Phosphoribulokinase and RNA Polymerase II , 2005 .

[61]  M. Chase,et al.  Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). , 2006, American journal of botany.

[62]  Bengt Oxelman,et al.  Origin and Evolution of a Circumpolar Polyploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA Polymerase Introns, rDNA, and Chloroplast DNA , 2005 .

[63]  M. Chase,et al.  Molecular systematics of Iridaceae: evidence from four plastid DNA regions. , 2001, American journal of botany.

[64]  T. Hedderson,et al.  A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from thetrnL —trnF region , 1999, Plant Systematics and Evolution.