A T-sum bound of LR-fuzzy numbers

Abstract In this paper, we provide an upper bound and a lower bound of T-sum of LR-fuzzy numbers with different spreads where T is Archimedean t-norm, and also show in three examples how close they are to actual membership functions Furthermore, we study when the membership function of T-sum achieves the upper bound.

[1]  Dug Hun Hong,et al.  On the convergence of T-sum of L-R fuzzy numbers , 1994 .

[2]  Dug Hun Hong,et al.  A note on product-sum of L–R fuzzy numbers , 1994 .

[3]  Radko Mesiar A note to the T-sum of L-R fuzzy numbers , 1996, Fuzzy Sets Syst..

[4]  Robert Fullér,et al.  A law of large numbers for fuzzy numbers , 1992 .

[5]  Richard L. Wheeden Measure and integral , 1977 .

[6]  H. Zimmermann,et al.  On computation of the compositional rule of inference under triangular norms , 1992 .

[7]  Dug Hun Hong,et al.  A law of large numbers for fuzzy numbers in a Banach space , 1996, Fuzzy Sets Syst..

[8]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[9]  Radko Mesiar,et al.  Shape preserving additions of fuzzy intervals , 1997, Fuzzy Sets Syst..

[10]  Eberhard Triesch,et al.  On the convergence of product-sum series of L-R fuzzy numbers , 1993 .

[11]  D. Dubois,et al.  Additions of interactive fuzzy numbers , 1981 .

[12]  E. Triesch Characterisation of Archimedian t -norms and a law of large numbers , 1993 .

[13]  R. Fullér On product-sum of triangular fuzzy numbers , 1991 .

[14]  Dug Hun Hong A Convergence Theorem for Arrays of L - R Fuzzy Numbers , 1996, Inf. Sci..

[15]  Tibor Keresztfalvi,et al.  t-Norm-based addition of fuzzy intervals , 1992 .

[16]  D. Hong,et al.  On the compositional rule of inference under triangular norms , 1994 .

[17]  Andrea Marková T-sum of L-R fuzzy numbers , 1997, Fuzzy Sets Syst..