Gaussian filtering and smoothing for continuous-discrete dynamic systems

This paper is concerned with Bayesian optimal filtering and smoothing of non-linear continuous-discrete state space models, where the state dynamics are modeled with non-linear Ito-type stochastic differential equations, and measurements are obtained at discrete time instants from a non-linear measurement model with Gaussian noise. We first show how the recently developed sigma-point approximations as well as the multi-dimensional Gauss-Hermite quadrature and cubature approximations can be applied to classical continuous-discrete Gaussian filtering. We then derive two types of new Gaussian approximation based smoothers for continuous-discrete models and apply the numerical methods to the smoothers. We also show how the latter smoother can be efficiently implemented by including one additional cross-covariance differential equation to the filter prediction step. The performance of the methods is tested in a simulated application.

[1]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[2]  Subhash Challa,et al.  Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..

[3]  J. Junkins,et al.  Optimal Estimation of Dynamic Systems , 2004 .

[4]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[5]  S. Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[6]  Simo Särkkä,et al.  Recursive Bayesian inference on stochastic differential equations , 2006 .

[7]  G. Roberts,et al.  On inference for partially observed nonlinear diffusion models using the Metropolis–Hastings algorithm , 2001 .

[8]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[9]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[10]  A. Jazwinski Filtering for nonlinear dynamical systems , 1966 .

[11]  S. Sarkka,et al.  Application of Girsanov Theorem to Particle Filtering of Discretely Observed Continuous - Time Non-Linear Systems , 2007, 0705.1598.

[12]  Hermann Singer Nonlinear continuous time modeling approaches in panel research , 2008 .

[13]  Cornelius T. Leondes,et al.  Nonlinear Smoothing Theory , 1970, IEEE Trans. Syst. Sci. Cybern..

[14]  Yuanxin Wu,et al.  A Numerical-Integration Perspective on Gaussian Filters , 2006, IEEE Transactions on Signal Processing.

[15]  Jeffrey K. Uhlmann,et al.  Corrections to "Unscented Filtering and Nonlinear Estimation" , 2004, Proc. IEEE.

[16]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[17]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[18]  Rudolph van der Merwe,et al.  The Unscented Kalman Filter , 2002 .

[19]  F. Daum Exact finite dimensional nonlinear filters , 1985, 1985 24th IEEE Conference on Decision and Control.

[20]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[21]  Mohinder S. Grewal,et al.  Global Positioning Systems, Inertial Navigation, and Integration , 2000 .

[22]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[23]  Bjørn Eraker MCMC Analysis of Diffusion Models With Application to Finance , 2001 .

[24]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[26]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[27]  Victor C. M. Leung,et al.  Unscented Rauch--Tung--Striebel Smoother , 2008, IEEE Transactions on Automatic Control.

[28]  Simo Särkkä,et al.  Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers , 2010, Signal Process..

[29]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.

[30]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[31]  Simo Särkkä,et al.  On Gaussian Optimal Smoothing of Non-Linear State Space Models , 2010, IEEE Transactions on Automatic Control.

[32]  Andrew P. Sage,et al.  Maximum a posteriori filtering and smoothing algorithms , 1970 .

[33]  C. Striebel,et al.  Partial differential equations for the conditional distribution of a Markov process given noisy observations , 1965 .

[34]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[35]  Andrew P. Sage,et al.  Estimation theory with applications to communications and control , 1979 .

[36]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[37]  Marc Maufort Global Positioning Systems , 2013 .

[38]  S. Särkkä,et al.  On Continuous-Discrete Cubature Kalman Filtering , 2012 .

[39]  J. Meditch A survey of data smoothing for linear and nonlinear dynamic systems , 1973 .

[40]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[41]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[42]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[43]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[44]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[45]  H. Kushner Approximations to optimal nonlinear filters , 1967, IEEE Transactions on Automatic Control.

[46]  W. Stirling,et al.  Fast nonlinear filtering via Galerkin's method , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[47]  A. S. Formulation Particle Smoothing in Continuous Time: A Fast Approach via Density Estimation , 2011 .

[48]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[49]  John L. Crassidis,et al.  Optimal Estimation of Dynamic Systems, Second Edition (Chapman & Hall/CRC Applied Mathematics & Nonlinear Science) , 2011 .

[50]  N E Manos,et al.  Stochastic Models , 1960, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[51]  HaykinSimon,et al.  Cubature kalman filtering for continuous-discrete systems , 2010 .