Multiple Classifier Combination For Recognition Of Wheat Leaf Diseases

Abstract Wheat industry is an important constituent of Northern China's overall agricultural economy. Proper disease detection using computer vision and pattern recognition has being investigated to minimize the loss, and fmally achieve intelligent healthy farming. This paper proposes a new strategy of Multi-Classifier System based on SVM (support vector machine) for pattern recognition of wheat leaf diseases for higher recognition accuracy. Diseased leaf samples with Powdery Mildew, Rust Puccinia Triticina, Leaf Blight, Puccinia Striifomus were collected in the field and images were captured before a uniform black background. Three feature sets including color feature set, shape feature set and texture feature set were created for classification analysis. The proposed combination strategy was based on stacked generalization and included two-level structure: base-level was a module of three kinds of SVM-based classifiers trained by three feature sets and meta-level was one module of SVM-based decision cla...

[1]  Bernard Zenko,et al.  Stacking with Multi-response Model Trees , 2002, Multiple Classifier Systems.

[2]  Alexander K. Seewald,et al.  How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness , 2002, International Conference on Machine Learning.

[3]  Fabio Roli,et al.  Design of Multiple Classifier Systems , 2002 .