Molecular machines integrate coincident synaptic signals

[1]  R. Andrade Enhancement of β-adrenergic responses by Gi-linked receptors in rat hippocampus , 1993, Neuron.

[2]  N. Unwin,et al.  Neurotransmitter action: Opening of ligand-gated ion channels , 1993, Cell.

[3]  C. Stevens Quantal release of neurotransmitter and long-term potentiation , 1993, Cell.

[4]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[5]  R. Iyengar,et al.  Two members of a widely expressed subfamily of hormone-stimulated adenylyl cyclases. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Kawabe,et al.  Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. Sakmann,et al.  Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. , 1992, Science.

[8]  T. Yamakura,et al.  Identification by mutagenesis of a Mg2+ -block site of the NMDA receptor channel , 1992, Nature.

[9]  T. Abrams,et al.  Temporal asymmetry in activation of Aplysia adenylyl cyclase by calcium and transmitter may explain temporal requirements of conditioning. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Kawabe,et al.  Isolation and characterization of a novel cardiac adenylylcyclase cDNA. , 1992, The Journal of biological chemistry.

[11]  K. Sakimura,et al.  Molecular diversity of the NMDA receptor channel , 1992, Nature.

[12]  Masao Ito,et al.  Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells , 1992, Neuroscience Research.

[13]  Y. Ben-Ari,et al.  Quisqualate Metabotropic Receptors Modulate NMDA Currents and Facilitate Induction of Long‐Term Potentiation Through Protein Kinase C , 1992, The European journal of neuroscience.

[14]  Z. Bortolotto,et al.  Activation of glutamate metabotropic receptors induces long-term potentiation. , 1992, European journal of pharmacology.

[15]  B. Conklin,et al.  Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits , 1992, Nature.

[16]  Ronald L. Davis,et al.  The Drosophila learning and memory gene rutabaga encodes a Ca 2+ calmodulin -responsive , 1992, Cell.

[17]  M. Hollmann,et al.  Molecular neurobiology of glutamate receptors. , 1992, Annual review of physiology.

[18]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[19]  A. Gilman,et al.  Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. , 1991, Science.

[20]  Masao Ito The cellular basis of cerebellar plasticity , 1991, Current Opinion in Neurobiology.

[21]  A. Gilman,et al.  Cloning and expression of a widely distributed (type IV) adenylyl cyclase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Gilman,et al.  Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Anwyl,et al.  The effects of trans-ACPD on long-term potentiation in the rat hippocampal slice. , 1991, NeuroReport.

[24]  Masao Ito,et al.  Differential blocking action of Joro spider toxin analog on parallel fiber and climbing fiber synapses in cerebellar Purkinje cells , 1991, Neuroscience Research.

[25]  E. Kandel,et al.  Biochemical studies of stimulus convergence during classical conditioning in Aplysia: dual regulation of adenylate cyclase by Ca2+/calmodulin and transmitter , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  M. Dickinson,et al.  A long-term depression of AMPA currents in cultured cerebellar purkinje neurons , 1991, Neuron.

[27]  A. Gilman,et al.  Expression and characterization of calmodulin-activated (type I) adenylylcyclase. , 1991, The Journal of biological chemistry.

[28]  T. Hirano,et al.  Differential pre‐ and postsynaptic mechanisms for synapic potentiation and depression between a granule cell and a purkinje cell in rat cerebellar culture , 1991, Synapse.

[29]  K. Shibuki,et al.  Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum , 1991, Nature.

[30]  Randall R. Reed,et al.  Identification of a specialized adenylyl cyclase that may mediate odorant detection. , 1990, Science.

[31]  F. Crépel,et al.  Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. , 1990, Neuroreport.

[32]  M. Ito,et al.  Messengers mediating long-term desensitization in cerebellar Purkinje cells. , 1990, Neuroreport.

[33]  M. Caron,et al.  Turning off the signal: desensitization of β‐adrenergic receptor function , 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  M. Sakurai Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Slaughter,et al.  Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. , 1989, Science.

[36]  G. Lynch,et al.  Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. , 1988, Science.

[37]  R. Iyengar,et al.  The G protein-gated atrial K+ channel is stimulated by three distinct GIα-subunits , 1988, Nature.

[38]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[39]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[40]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[41]  L. Nowak,et al.  The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture. , 1988, The Journal of physiology.

[42]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[43]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[44]  M. Mayer,et al.  Agonist- and voltage-gated calcium entry in cultured mouse spinal cord neurons under voltage clamp measured using arsenazo III , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[47]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[48]  M. Kano,et al.  Quisqualate receptors are specifically involved in cerebellar synaptic plasticity , 1987, Nature.

[49]  A. Edelman,et al.  Protein serine/threonine kinases. , 1987, Annual review of biochemistry.

[50]  R. Nicoll,et al.  A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. , 1986, Science.

[51]  S. Kelso,et al.  Hebbian synapses in hippocampus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Robert C. Malenka,et al.  Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells , 1986, Nature.

[53]  P. Adams,et al.  Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. , 1986, Journal of neurophysiology.

[54]  R. Malinow,et al.  Postsynaptic hyperpolarization during conditioning reversibly blocks induction of long-term potentiation , 1986, Nature.

[55]  R. Nicoll,et al.  Cyclic adenosine 3',5'‐monophosphate mediates beta‐receptor actions of noradrenaline in rat hippocampal pyramidal cells. , 1986, The Journal of physiology.

[56]  S. Enna,et al.  Characterization of the relationship between gamma-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. , 1985, Molecular pharmacology.

[57]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[58]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[59]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[60]  Helmut L. Haas,et al.  Histamine and noradrenaline decrease calcium-activated potassium conductance in hippocampal pyramidal cells , 1983, Nature.

[61]  R. Nicoll,et al.  Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus , 1982, Nature.

[62]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[63]  J. Daly,et al.  Fluoronorepinephrines: specific agonists for the activation of alpha and beta adrenergic-sensitive cyclic AMP-generating systems in brain slices. , 1980, The Journal of pharmacology and experimental therapeutics.

[64]  A. Sattin,et al.  Regulation of cyclic adenosine 3',5'-monophosphate levels in guinea-pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. , 1975, The Journal of pharmacology and experimental therapeutics.

[65]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[66]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.