Homogenization of Linear and Semilinear Second Order Parabolic PDEs with Periodic Coefficients: A Probabilistic Approach☆

We study the limit of the solution of linear and semilinear second order PDEs of parabolic type, with rapidly oscillating periodic coefficients, singular drift, and singular coefficient of the zeroth order term. Our method of proof is fully probabilistic and builds upon the arguments in earlier work. In the linear case, we use the Feynman Kac formula to represent the solution of the parabolic PDE, and in the semilinear case we use an associated backward stochastic differential equation.

[1]  Fabien Campillo,et al.  Homogenization of random parabolic operator with large potential , 2001 .

[2]  Ying Hu,et al.  Probabilistic approach to homogenization of viscosity solutions of parabolic PDEs , 1999 .

[3]  A. Lejay Approche probabiliste de l'homogénéisation des opérateurs sous forme divergence en milieu périodique , 1998 .

[4]  É. Pardoux,et al.  Convergence en loi d'EDSR et application à l'homogénéisation d'EDP semi-linéaires paraboliques , 1998 .

[5]  Mark Freidlin,et al.  Markov Processes and Di+erential Equations: Asymptotic Problems , 1996 .

[6]  A. Bensoussan,et al.  H convergence for quasi-linear elliptic equations with quadratic growth , 1992 .

[7]  B. Rozovskii Stochastic Partial Differential Equations and Their Applications , 1992 .

[8]  Thomas G. Kurtz,et al.  Random Time Changes and Convergence in Distribution Under the Meyer-Zheng Conditions , 1991 .

[9]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[10]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[11]  É. Pardoux,et al.  EDSR, convergence en loi et homogénéisation d'EDP paraboliques semi-linéaires , 2001 .

[12]  É. Pardoux BSDEs, weak convergence and homogenization of semilinear PDEs , 1999 .

[13]  F. Clarke,et al.  Nonlinear Analysis, Differential Equations and Control , 1999 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  Daniel W. Stroock,et al.  Diffusion semigroups corresponding to uniformly elliptic divergence form operators , 1988 .

[16]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[17]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[18]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[19]  M. Freidlin Dirichlet’s Problem for an Equation with Periodic Coefficients Depending on a Small Parameter , 1964 .