Adaptive spacetime discontinuous Galerkin method for hyperbolic advection–diffusion with a non‐negativity constraint

Summary Applications where the diffusive and advective time scales are of similar order give rise to advection–diffusion phenomena that are inconsistent with the predictions of parabolic Fickian diffusion models. Non-Fickian diffusion relations can capture these phenomena and remedy the paradox of infinite propagation speeds in Fickian models. In this work, we implement a modified, frame-invariant form of Cattaneo's hyperbolic diffusion relation within a spacetime discontinuous Galerkin advection–diffusion model. An h-adaptive spacetime meshing procedure supports an asynchronous, patch-by-patch solution procedure with linear computational complexity in the number of spacetime elements. This localized solver enables the selective application of optimization algorithms in only those patches that require inequality constraints to ensure a non-negative concentration solution. In contrast to some previous methods, we do not modify the numerical fluxes to enforce non-negative concentrations. Thus, the element-wise conservation properties that are intrinsic to discontinuous Galerkin models are defined with respect to physically meaningful Riemann fluxes on the element boundaries. We present numerical examples that demonstrate the effectiveness of the proposed model, and we explore the distinct features of hyperbolic advection–diffusion response in subcritical and supercritical flows. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  F. Navarrina,et al.  A Hyperbolic Theory for Advection-Diffusion Problems: Mathematical Foundations and Numerical Modeling , 2010 .

[2]  P. Roe,et al.  Space-Time Methods for Hyperbolic Conservation Laws , 1998 .

[3]  Fermín Navarrina,et al.  A finite element formulation for a convection-diffusion equation based on Cattaneo's law , 2007 .

[4]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[5]  Robert B. Haber,et al.  Sub‐cell shock capturing and spacetime discontinuity tracking for nonlinear conservation laws , 2008 .

[6]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[7]  Fermín Navarrina,et al.  A discontinuous Galerkin method for a hyperbolic model for convection–diffusion problems in CFD , 2007 .

[8]  Fermín Navarrina,et al.  A mathematical model and a numerical model for hyperbolic mass transport in compressible flows , 2008 .

[9]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[10]  D. Tortorelli,et al.  A Space-Time Discontinuous Galerkin Method for Elastodynamic Analysis , 2000 .

[11]  Bernard Parent,et al.  Positivity-preserving high-resolution schemes for systems of conservation laws , 2012, J. Comput. Phys..

[12]  C. Christov,et al.  Heat conduction paradox involving second-sound propagation in moving media. , 2005, Physical review letters.

[13]  H. Q. Yang Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction , 1990 .

[14]  Fabien Marche,et al.  A Positive Preserving High Order VFRoe Scheme for Shallow Water Equations: A Class of Relaxation Schemes , 2008, SIAM J. Sci. Comput..

[15]  L. Yin A Spacetime Discontinuous Galerkin Finite-Element Method for Elastodynamic Analysis , 2002 .

[16]  Shripad Thite,et al.  An h-adaptive spacetime-discontinuous Galerkin method for linear elastodynamics , 2006 .

[17]  John F. Brady,et al.  Dispersion in Porous Media , 1988 .

[18]  Collected Reprint Series 9. Water Flow and Solute Transport Processes in the Unsaturated Zone , 2014 .

[19]  Shripad Thite A unified algorithm for adaptive spacetime meshing with nonlocal cone constraints , 2005, EuroCG.

[20]  Richard S. Falk,et al.  Explicit Finite Element Methods for Symmetric Hyperbolic Equations , 1999 .

[21]  L. Grippo,et al.  A nonmonotone line search technique for Newton's method , 1986 .

[22]  Maruti Kumar Mudunuru,et al.  A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint , 2012, J. Comput. Phys..

[23]  Ambady Suresh,et al.  Positivity-Preserving Schemes in Multidimensions , 2000, SIAM J. Sci. Comput..

[24]  Z. Sheng,et al.  A monotone finite volume scheme for advection–diffusion equations on distorted meshes , 2012 .

[25]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[26]  Bernardo Cockburn,et al.  Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.

[27]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[28]  Lucas O. Müller,et al.  Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes , 2014, J. Comput. Phys..

[29]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[30]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[31]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[32]  R. Haber,et al.  An adaptive spacetime discontinuous Galerkin method for cohesive models of elastodynamic fracture , 2010 .

[33]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[34]  Numerical solution of two-dimensional axisymmetric hyperbolic heat conduction , 2002 .

[35]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[36]  D. Chandrasekharaiah,et al.  Hyperbolic Thermoelasticity: A Review of Recent Literature , 1998 .

[37]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[38]  Graham F. Carey,et al.  HYPERBOLIC HEAT TRANSFER WITH REFLECTION , 1982 .

[39]  R. Haber,et al.  A spacetime discontinuous Galerkin method for scalar conservation laws , 2004 .

[40]  Yuan Zhou,et al.  Spacetime meshing with adaptive refinement and coarsening , 2004, SCG '04.

[41]  Xikui Li,et al.  Application of the time discontinuous Galerkin finite element method to heat wave simulation , 2006 .

[42]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[43]  Felipe Pereira,et al.  On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs , 1997 .

[44]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[45]  Elliott W. Montroll,et al.  Random walks on lattices. IV. Continuous-time walks and influence of absorbing boundaries , 1973 .

[46]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[47]  Margot Gerritsen,et al.  MODELING FLUID FLOW IN OIL RESERVOIRS , 2005 .

[48]  Harsha Nagarajan,et al.  A numerical methodology for enforcing maximum principles and the non-negative constraint for transient diffusion equations , 2012, ArXiv.

[49]  Godoy,et al.  From the quantum random walk to classical mesoscopic diffusion in crystalline solids. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[51]  Robert B. Haber,et al.  Riemann solutions and spacetime discontinuous Galerkin method for linear elastodynamic contact , 2014 .

[52]  Richard Liska,et al.  Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems , 2007 .

[53]  Albert J. Valocchi,et al.  Non-negative mixed finite element formulations for a tensorial diffusion equation , 2008, J. Comput. Phys..

[54]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[55]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[56]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[57]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[58]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[59]  Boi Faltings,et al.  Solving Mixed and Conditional Constraint Satisfaction Problems , 2003, Constraints.

[60]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[61]  Robert B. Haber,et al.  A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance , 2006 .

[62]  Robert B. Haber,et al.  A spacetime discontinuous Galerkin method for hyperbolic heat conduction , 2008 .

[63]  Scott T. Miller,et al.  Multi-field spacetime discontinuous Galerkin methods for linearized elastodynamics , 2009 .

[64]  Victor H. Quintana,et al.  Optimal power flow by a nonlinear complementarity method , 1999, Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond (Cat. No.99CH36351).