Phonon dispersions in random alloys: a method based on special quasi-random structure force constants

In an attempt to obtain reliable first-principles phonon dispersions of random alloys, we have developed a method to calculate the dynamical matrix, with respect to the wavevector space of the ideal lattice, by averaging over the force constants of a special quasi-random structure. Without additional approximations beyond standard density functional theory, the present scheme takes into account the local atomic position relaxations, the composition disorder, and the force constant disorder in a random alloy. Numerical results are presented for disordered Cu3Au, FePd, and NiPd and good agreement between the calculations and the inelastic neutron scattering data is observed.

[1]  P. Giannozzi,et al.  Density-Functional Perturbation Theory for Quasi-Harmonic Calculations , 2010 .

[2]  Zi-Kui Liu,et al.  Structural, vibrational, and thermodynamic properties of ordered and disordered Ni 1 − x Pt x alloys from first-principles calculations , 2011 .

[3]  Subhradip Ghosh,et al.  Ab initiocalculation of phonon dispersions in size-mismatched disordered alloys , 2010 .

[4]  Shun-Li Shang,et al.  Broken symmetry, strong correlation, and splitting between longitudinal and transverse optical phonons of MnO and NiO from first principles , 2010 .

[5]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[6]  M. Asta,et al.  First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al–TM (TM = Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods , 2008 .

[7]  Yi Wang,et al.  First-principles study of ternary fcc solution phases from special quasirandom structures , 2007, 0709.2302.

[8]  A. Alam,et al.  Phonons in disordered alloys: Comparison between augmented-space-based approximations for configuration averaging to integration from first principles , 2007 .

[9]  Y. Feng,et al.  First-principles calculation of the thermodynamics of In x Ga 1 − x N alloys: Effect of lattice vibrations , 2006, cond-mat/0607051.

[10]  H. Dosch,et al.  Temperature and concentration dependence of the effective pair interaction parameters in Ni-Pd from high-energy x-ray diffuse scattering , 2006 .

[11]  Zi-kui Liu,et al.  Application of ab initio and CALPHAD thermodynamics to Mo-Ta-W alloys , 2004 .

[12]  Subhradip Ghosh,et al.  First-principles description of phonons in Ni 50 Pt 50 disordered alloys: The role of relaxation , 2004, cond-mat/0403301.

[13]  A. Marty,et al.  Lattice dynamics and migration enthalpies in CoPt3 and FePd , 2004 .

[14]  G. Ceder,et al.  Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys , 2003, cond-mat/0302109.

[15]  P. Leath,et al.  Phonons in random alloys: The itinerant coherent-potential approximation , 2002, cond-mat/0208494.

[16]  B. Johansson,et al.  Anisotropic lattice distortions in random alloys from first-principles theory. , 2001, Physical review letters.

[17]  Zi-kui Liu,et al.  Thermodynamics of the Cr-Ta-W system by combining the Ab Initio and CALPHAD methods , 2001 .

[18]  G. Ceder,et al.  The effect of lattice vibrations on substitutional alloy thermodynamics , 2001, cond-mat/0106490.

[19]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[20]  A. van de Walle,et al.  First-principles computation of the vibrational entropy of ordered and disordered Pd 3 V , 2000 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Gerbrand Ceder,et al.  First-Principles Computation of the Vibrational Entropy of Ordered and Disordered Ni3Al , 1998 .

[23]  B. Johansson,et al.  Applicability of the coherent-potential approximation in the theory of random alloys , 1998 .

[24]  A. Zunger,et al.  First-principles theory of the evolution of vibrational properties with long-range order in GaInP{sub 2} , 1998 .

[25]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[29]  M. Iizumi,et al.  Lattice dynamics of Cu3Au in the ordered and disordered states , 1988 .

[30]  E. Hallman Crystal Dynamics of the Alloy Cu3Au , 1974 .

[31]  W. Kamitakahara,et al.  Vibrations of a mixed crystal: Neutron scattering fromNi55Pd45 , 1974 .

[32]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[33]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .